Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 137(5): 661-677, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33197925

ABSTRACT

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Subject(s)
Acetamides/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Isoindoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Piperidones/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Acetamides/therapeutic use , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Humans , Isoindoles/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neoplastic Stem Cells/enzymology , Nuclear Factor 45 Protein/physiology , Nuclear Factor 90 Proteins/physiology , Peptide Termination Factors/metabolism , Piperidones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Proteolysis , Small Molecule Libraries , Stress, Physiological , TOR Serine-Threonine Kinases/physiology , U937 Cells , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
2.
J Med Chem ; 63(13): 6648-6676, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32130004

ABSTRACT

Many patients with multiple myeloma (MM) initially respond to treatment with modern combination regimens including immunomodulatory agents (lenalidomide and pomalidomide) and proteasome inhibitors. However, some patients lack an initial response to therapy (i.e., are refractory), and although the mean survival of MM patients has more than doubled in recent years, most patients will eventually relapse. To address this need, we explored the potential of novel cereblon E3 ligase modulators (CELMoDs) for the treatment of patients with relapsed or refractory multiple myeloma (RRMM). We found that optimization beyond potency of degradation, including degradation efficiency and kinetics, could provide efficacy in a lenalidomide-resistant setting. Guided by both phenotypic and protein degradation data, we describe a series of CELMoDs for the treatment of RRMM, culminating in the discovery of CC-92480, a novel protein degrader and the first CELMoD to enter clinical development that was specifically designed for efficient and rapid protein degradation kinetics.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/pharmacology , Multiple Myeloma/drug therapy , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Inhibitory Concentration 50 , Mice , Multiple Myeloma/pathology , Recurrence , Stereoisomerism , Treatment Failure , Ubiquitin-Protein Ligases/antagonists & inhibitors , Xenograft Model Antitumor Assays
3.
Elife ; 72018 09 20.
Article in English | MEDLINE | ID: mdl-30234487

ABSTRACT

The cereblon modulating agents (CMs) including lenalidomide, pomalidomide and CC-220 repurpose the Cul4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase complex to induce the degradation of specific neomorphic substrates via polyubiquitination in conjunction with E2 ubiquitin-conjugating enzymes, which have until now remained elusive. Here we show that the ubiquitin-conjugating enzymes UBE2G1 and UBE2D3 cooperatively promote the K48-linked polyubiquitination of CRL4CRBN neomorphic substrates via a sequential ubiquitination mechanism. Blockade of UBE2G1 diminishes the ubiquitination and degradation of neomorphic substrates, and consequent antitumor activities elicited by all tested CMs. For example, UBE2G1 inactivation significantly attenuated the degradation of myeloma survival factors IKZF1 and IKZF3 induced by lenalidomide and pomalidomide, hence conferring drug resistance. UBE2G1-deficient myeloma cells, however, remained sensitive to a more potent IKZF1/3 degrader CC-220. Collectively, it will be of fundamental interest to explore if loss of UBE2G1 activity is linked to clinical resistance to drugs that hijack the CRL4CRBN to eliminate disease-driving proteins.


Subject(s)
Peptide Hydrolases/metabolism , Proteolysis , Ubiquitin-Conjugating Enzymes/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Cell Line, Tumor , HEK293 Cells , Humans , Ikaros Transcription Factor/metabolism , Substrate Specificity/drug effects , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Br J Haematol ; 172(6): 889-901, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26914976

ABSTRACT

Pomalidomide is an IMiD(®) immunomodulatory agent, which has shown clinically significant benefits in relapsed and/or refractory multiple myeloma (rrMM) patients when combined with dexamethasone, regardless of refractory status to lenalidomide or bortezomib. (Schey et al, ; San Miguel et al, 2013; Richardson et al, 2014; Scott, ) In this work, we present preclinical data showing that the combination of pomalidomide with dexamethasone (PomDex) demonstrates potent anti-proliferative and pro-apoptotic activity in both lenalidomide-sensitive and lenalidomide-resistant MM cell lines. PomDex also synergistically inhibited tumour growth compared with single-agent treatment in xenografts of lenalidomide-resistant H929 R10-1 cells. Typical hallmarks of IMiD compound activity, including IKZF3 (Aiolos) degradation, and the downregulation of interferon regulatory factor (IRF) 4 and MYC, seen in lenalidomide-sensitive H929 MM cell lines, were also observed in PomDex-treated lenalidomide-resistant H929 MM cells. Remarkably, this resulted in strong, synergistic effects on the induction of apoptosis in both lenalidomide-sensitive and resistant MM cells. Furthermore, gene expression profiling revealed a unique differential gene expression pattern in PomDex-treated samples, highlighted by the modulation of pro-apoptotic pathways in lenalidomide-resistant cells. These results provide key insights into molecular mechanisms of PomDex in the lenalidomide-resistant setting.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Dexamethasone/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunomodulation/drug effects , Lenalidomide , Mice, SCID , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
5.
Br J Haematol ; 164(2): 233-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24206017

ABSTRACT

Cereblon, a member of the cullin 4 ring ligase complex (CRL4), is the molecular target of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide and is required for the antiproliferative activity of these agents in multiple myeloma (MM) and immunomodulatory activity in T cells. Cereblon's central role as a target of lenalidomide and pomalidomide suggests potential utility as a predictive biomarker of response or resistance to IMiD therapy. Our studies characterized a cereblon monoclonal antibody CRBN65, with high sensitivity and specificity in Western analysis and immunohistochemistry that is superior to commercially available antibodies. We identified multiple cereblon splice variants in both MM cell lines and primary cells, highlighting challenges with conventional gene expression assays given this gene complexity. Using CRBN65 antibody and TaqMan quantitative reverse transcription polymerase chain reaction assays, we showed lack of correlation between cereblon protein and mRNA levels. Furthermore, lack of correlation between cereblon expression in MM cell lines and sensitivity to lenalidomide was shown. In cell lines made resistant to lenalidomide and pomalidomide, cereblon protein is greatly reduced. These studies show limitations to the current approaches of cereblon measurement that rely on commercial reagents and assays. Standardized reagents and validated assays are needed to accurately assess the role of cereblon as a predictive biomarker.


Subject(s)
Drug Resistance, Neoplasm/genetics , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Adaptor Proteins, Signal Transducing , Alternative Splicing , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Multiple Myeloma/drug therapy , Peptide Hydrolases/immunology , RNA Isoforms , Thalidomide/therapeutic use , Ubiquitin-Protein Ligases
6.
Br J Haematol ; 154(3): 325-36, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21707574

ABSTRACT

Overexpression of the transcription factor interferon regulatory factor-4 (IRF4), which is common in multiple myeloma (MM), is associated with poor prognosis. Patients with higher IRF4 expression have significantly poorer overall survival than those with low IRF4 expression. Lenalidomide is an IMiD immunomodulatory compound that has both tumouricidal and immunomodulatory activity in MM. This study showed that lenalidomide downregulated IRF4 levels in MM cell lines and bone marrow samples within 8 h of drug exposure. This was associated with a decrease in MYC levels, as well as an initial G1 cell cycle arrest, decreased cell proliferation, and cell death by day 5 of treatment. In eight MM cell lines, high IRF4 levels correlated with increased lenalidomide sensitivity. The clinical significance of this observation was investigated in 154 patients with MM. Among MM patients with high levels of IRF4 expression, treatment with lenalidomide led to a significantly longer overall survival than other therapies in a retrospective analysis. These data confirm the central role of IRF4 in MM pathogenesis; indicate that this is an important mechanism by which lenalidomide exerts its antitumour effects; and may provide a mechanistic biomarker to predict response to lenalidomide.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/biosynthesis , Interferon Regulatory Factors/biosynthesis , Multiple Myeloma/metabolism , Thalidomide/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Cell Proliferation , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Genes, myc , Humans , Interferon Regulatory Factors/antagonists & inhibitors , Interferon Regulatory Factors/genetics , Lenalidomide , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Prognosis , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , Thalidomide/pharmacology , Thalidomide/therapeutic use , Treatment Outcome , Tumor Cells, Cultured
7.
Blood ; 111(9): 4690-9, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18305219

ABSTRACT

Decreased p27(Kip1) levels are a poor prognostic factor in many malignancies, and can occur through up-regulation of SCF(Skp2) E3 ligase function, resulting in enhanced p27 ubiquitination and proteasome-mediated degradation. While proteasome inhibitors stabilize p27(Kip1), agents inhibiting SCF(Skp2) may represent more directly targeted drugs with the promise of enhanced efficacy and reduced toxicity. Using high-throughput screening, we identified Compound A (CpdA), which interfered with SCF(Skp2) ligase function in vitro, and induced specific accumulation of p21 and other SCF(Skp2) substrates in cells without activating a heat-shock protein response. CpdA prevented incorporation of Skp2 into the SCF(Skp2) ligase, and induced G(1)/S cell-cycle arrest as well as SCF(Skp2)- and p27-dependent cell killing. This programmed cell death was caspase-independent, and instead occurred through activation of autophagy. In models of multiple myeloma, CpdA overcame resistance to dexamethasone, doxorubicin, and melphalan, as well as to bortezomib, and also acted synergistically with this proteasome inhibitor. Importantly, CpdA was active against patient-derived plasma cells and both myeloid and lymphoblastoid leukemia blasts, and showed preferential activity against neoplastic cells while relatively sparing other marrow components. These findings provide a rational framework for further development of SCF(Skp2) inhibitors as a novel class of antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy , Cell Cycle , Cyclin-Dependent Kinase Inhibitor p27/physiology , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/antagonists & inhibitors , Cell Line, Tumor , Drug Delivery Systems/methods , Drug Resistance, Neoplasm , Humans , Multiple Myeloma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...