Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Hum Brain Mapp ; 44(15): 5125-5138, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37608591

ABSTRACT

While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co-localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature-born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full-term born young adults, being assessed by resting-state functional MRI (rs-fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co-localization of local (rs-fMRI) activity alterations in premature-born adults with respect to term-born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co-localization is related to perinatal measures and IQ. We found selectively altered co-localization of rs-fMRI activity in the premature-born cohort with dopamine-2/3-receptor availability in premature-born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co-localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.


Subject(s)
Cognition , Dopamine , Dopaminergic Imaging , Infant, Extremely Premature , Premature Birth , Synaptic Transmission , Dopamine/physiology , Premature Birth/diagnostic imaging , Premature Birth/psychology , Humans , Male , Female , Infant , Young Adult , Magnetic Resonance Imaging , Oxygen Saturation , Intelligence Tests
2.
CNS Neurosci Ther ; 29(11): 3199-3211, 2023 11.
Article in English | MEDLINE | ID: mdl-37365964

ABSTRACT

AIMS: To investigate cortical organization in brain magnetic resonance imaging (MRI) of preterm-born adults using percent contrast of gray-to-white matter signal intensities (GWPC), which is an in vivo proxy measure for cortical microstructure. METHODS: Using structural MRI, we analyzed GWPC at different percentile fractions across the cortex (0%, 10%, 20%, 30%, 40%, 50%, and 60%) in a large and prospectively collected cohort of 86 very preterm-born (<32 weeks of gestation and/or birth weight <1500 g, VP/VLBW) adults and 103 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. RESULTS: GWPC was significantly decreased in VP/VLBW adults in frontal, parietal, and temporal associative cortices, predominantly in the right hemisphere. Differences were pronounced at 20%, 30%, and 40%, hence, in middle cortical layers. GWPC was significantly increased in right paracentral lobule in VP/VLBW adults. GWPC in frontal and temporal cortices was positively correlated with birth weight, and negatively with duration of ventilation (p < 0.05). Furthermore, GWPC in right paracentral lobule was negatively correlated with IQ (p < 0.05). CONCLUSIONS: Widespread aberrant gray-to-white matter contrast suggests lastingly altered cortical microstructure after preterm birth, mainly in middle cortical layers, with differential effects on associative and primary cortices.


Subject(s)
Premature Birth , White Matter , Female , Humans , Adult , Infant, Newborn , White Matter/diagnostic imaging , White Matter/pathology , Birth Weight , Infant, Very Low Birth Weight , Premature Birth/diagnostic imaging , Premature Birth/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Brain/diagnostic imaging , Magnetic Resonance Imaging
3.
Brain Commun ; 5(1): fcac341, 2023.
Article in English | MEDLINE | ID: mdl-36632185

ABSTRACT

A universal allometric scaling law has been proposed to describe cortical folding of the mammalian brain as a function of the product of cortical surface area and the square root of cortical thickness across different mammalian species, including humans. Since these cortical properties are vulnerable to developmental disturbances caused by preterm birth in humans and since these alterations are related to cognitive impairments, we tested (i) whether cortical folding in preterm-born adults follows this cortical scaling law and (ii) the functional relevance of potential scaling aberrances. We analysed the cortical scaling relationship in a large and prospectively collected cohort of 91 very premature-born adults (<32 weeks of gestation and/or birthweight <1500 g, very preterm and/or very low birth weight) and 105 full-term controls at 26 years of age based on the total surface area, exposed surface area and average cortical thickness measured with structural magnetic resonance imaging and surface-based morphometry. We found that the slope of the log-transformed cortical scaling relationship was significantly altered in adults (very preterm and/or very low birth weight: 1.24, full-term: 1.14, P = 0.018). More specifically, the slope was significantly altered in male adults (very preterm and/or very low birth weight: 1.24, full-term: 1.00, P = 0.031), while there was no significant difference in the slope of female adults (very preterm and/or very low birth weight: 1.27, full-term: 1.12, P = 0.225). Furthermore, offset was significantly lower compared with full-term controls in both male (very preterm and/or very low birth weight: -0.546, full-term: -0.538, P = 0.001) and female adults (very preterm and/or very low birth weight: -0.545, full-term: -0.538, P = 0.023), indicating a systematic shift of the regression line after preterm birth. Gestational age had a significant effect on the slope in very preterm and/or very low birth weight adults and more specifically in male very preterm and/or very low birth weight adults, indicating that the difference in slope is specifically related to preterm birth. The shape or tension term of the scaling law had no significant effect on cognitive performance, while the size of the cortex did. Results demonstrate altered scaling of cortical surface and cortical thickness in very premature-born adults. Data suggest altered mechanical forces acting on the cortex after preterm birth.

4.
Neuroimage Clin ; 37: 103286, 2023.
Article in English | MEDLINE | ID: mdl-36516730

ABSTRACT

The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.


Subject(s)
Claustrum , Premature Birth , White Matter , Infant, Newborn , Adult , Pregnancy , Female , Humans , Brain , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging , Infant, Premature , White Matter/diagnostic imaging
5.
Article in English | MEDLINE | ID: mdl-35276405

ABSTRACT

BACKGROUND: Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS: We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS: Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS: Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.


Subject(s)
Gray Matter , Premature Birth , Humans , Female , Gray Matter/pathology , Premature Birth/pathology , Magnetic Resonance Imaging/methods , Birth Weight
6.
Neuroimage ; 264: 119750, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36379421

ABSTRACT

The myelin concentration and the degree of myelination of nerve fibers can provide valuable information on the integrity of human brain tissue. Magnetic resonance imaging (MRI) of myelin-sensitive parameters can help to non-invasively evaluate demyelinating diseases such as multiple sclerosis (MS). Several different myelin-sensitive MRI methods have been proposed to determine measures of the degree of myelination, in particular the g-ratio. However, variability in underlying physical principles and different biological models influence measured myelin concentrations, and consequently g-ratio values. We therefore investigated similarities and differences between five different myelin-sensitive MRI measures and their effects on g-ratio mapping in the brains of both MS patients and healthy volunteers. We compared two different estimates of the myelin water fraction (MWF) as well as the inhomogeneous magnetization transfer ratio (ihMTR), magnetization transfer saturation (MTsat), and macromolecular tissue volume (MTV) in 13 patients with MS and 14 healthy controls. In combination with diffusion-weighted imaging, we derived g-ratio parameter maps for each of the five different myelin measures. The g-ratio values calculated from different myelin measures varied strongly, especially in MS lesions. While, compared to normal-appearing white matter, MTsat and one estimate of the MWF resulted in higher g-ratio values within lesions, ihMTR, MTV, and the second MWF estimate resulted in lower lesion g-ratio values. As myelin-sensitive measures provide rough estimates of myelin content rather than absolute myelin concentrations, resulting g-ratio values strongly depend on the utilized myelin measure and model used for g-ratio mapping. When comparing g-ratio values, it is, thus, important to utilize the same MRI methods and models or to consider methodological differences. Particular caution is necessary in pathological tissue such as MS lesions.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Myelin Sheath/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Water
7.
Front Psychiatry ; 13: 925476, 2022.
Article in English | MEDLINE | ID: mdl-36203848

ABSTRACT

For decades, aberrant dopamine transmission has been proposed to play a central role in schizophrenia pathophysiology. These theories are supported by human in vivo molecular imaging studies of dopamine transmission, particularly positron emission tomography. However, there are several downsides to such approaches, for example limited spatial resolution or restriction of the measurement to synaptic processes of dopaminergic neurons. To overcome these limitations and to measure complementary aspects of dopamine transmission, magnetic resonance imaging (MRI)-based approaches investigating the macrostructure, metabolism, and connectivity of dopaminergic nuclei, i.e., substantia nigra pars compacta and ventral tegmental area, can be employed. In this scoping review, we focus on four dopamine MRI methods that have been employed in patients with schizophrenia so far: neuromelanin MRI, which is thought to measure long-term dopamine function in dopaminergic nuclei; morphometric MRI, which is assumed to measure the volume of dopaminergic nuclei; diffusion MRI, which is assumed to measure fiber-based structural connectivity of dopaminergic nuclei; and resting-state blood-oxygenation-level-dependent functional MRI, which is thought to measure functional connectivity of dopaminergic nuclei based on correlated blood oxygenation fluctuations. For each method, we describe the underlying signal, outcome measures, and downsides. We present the current state of research in schizophrenia and compare it to other disorders with either similar (psychotic) symptoms, i.e., bipolar disorder and major depressive disorder, or dopaminergic abnormalities, i.e., substance use disorder and Parkinson's disease. Finally, we discuss overarching issues and outline future research questions.

8.
Clin Neuroradiol ; 32(3): 665-676, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35072752

ABSTRACT

PURPOSE: Intrauterine claustrum and subplate neuron development have been suggested to overlap. As premature birth typically impairs subplate neuron development, neonatal claustrum might indicate a specific prematurity impact; however, claustrum identification usually relies on expert knowledge due to its intricate structure. We established automated claustrum segmentation in newborns. METHODS: We applied a deep learning-based algorithm for segmenting the claustrum in 558 T2-weighted neonatal brain MRI of the developing Human Connectome Project (dHCP) with transfer learning from claustrum segmentation in T1-weighted scans of adults. The model was trained and evaluated on 30 manual bilateral claustrum annotations in neonates. RESULTS: With only 20 annotated scans, the model yielded median volumetric similarity, robust Hausdorff distance and Dice score of 95.9%, 1.12 mm and 80.0%, respectively, representing an excellent agreement between the automatic and manual segmentations. In comparison with interrater reliability, the model achieved significantly superior volumetric similarity (p = 0.047) and Dice score (p < 0.005) indicating stable high-quality performance. Furthermore, the effectiveness of the transfer learning technique was demonstrated in comparison with nontransfer learning. The model can achieve satisfactory segmentation with only 12 annotated scans. Finally, the model's applicability was verified on 528 scans and revealed reliable segmentations in 97.4%. CONCLUSION: The developed fast and accurate automated segmentation has great potential in large-scale study cohorts and to facilitate MRI-based connectome research of the neonatal claustrum. The easy to use models and codes are made publicly available.


Subject(s)
Claustrum , Adult , Humans , Image Processing, Computer-Assisted , Infant, Newborn , Machine Learning , Magnetic Resonance Imaging , Neuroimaging , Reproducibility of Results
9.
Front Endocrinol (Lausanne) ; 13: 1057566, 2022.
Article in English | MEDLINE | ID: mdl-36589836

ABSTRACT

Introduction: Preterm birth is associated with an increased risk for impaired body weight gain. While it is known that in prematurity several somatic and environmental factors (e.g., endocrine factors, nutrition) modulate short- and long-term body weight gain, the contribution of potentially impaired body weight control in the brain remains elusive. We hypothesized that the structure of hypothalamic nuclei involved in body weight control is altered after preterm birth, with these alterations being associated with aberrant body weight development into adulthood. Materials and methods: We assessed 101 very preterm (i.e., <32 weeks of gestational age) and/or very low birth weight (i.e., <1500g; VP/VLBW) and 110 full-term born (FT) adults of the population-based Bavarian Longitudinal Study with T1-weighted MRI, deep learning-based hypothalamus subunit segmentation, and multiple body weight assessments from birth into adulthood. Results: Volumes of the whole hypothalamus and hypothalamus subunits relevant for body weight control were reduced in VP/VLBW adults and associated with birth variables (i.e., gestational age and intensity of neonatal treatment), body weight (i.e., weight at birth and adulthood), and body weight trajectories (i.e., trajectory slopes and cluster/types such as long-term catch-up growth). Particularly, VP/VLBW subgroups, whose individuals showed catch-up growth and/or were small for gestational age, were mostly associated with volumes of distinct hypothalamus subunits such as lateral or infundibular/ventromedial hypothalamus. Conclusion: Results demonstrate lower volumes of body weight control-related hypothalamus subunits after preterm birth that link with long-term body weight gain. Data suggest postnatal development of body weight -related hypothalamic nuclei in VP/VLBW individuals that corresponds with distinct body weight trajectories into adulthood.


Subject(s)
Body-Weight Trajectory , Premature Birth , Adult , Female , Humans , Infant, Newborn , Longitudinal Studies , Brain , Hypothalamus
10.
J Pers Med ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34575645

ABSTRACT

Cross-sectional studies have reported lower brain grey matter volumes (GMV) and white matter volumes (WMV) in preterm (PT) born individuals. While large MRI studies in the normative population have led to a better understanding of brain growth trajectories across the lifespan, such results remain elusive for PT born individuals since large, aggregated datasets of PT born individuals do not exist. To close this gap, we investigated GMV and WMV in PT born individuals as reported in the literature and contrasted it against individual volumetric data and trajectories from the general population. Systematic database search of PubMed and Web of Science in March 2021, and extraction of outcome measures were conducted by two independent reviewers. Individual data on full-term (FT) controls was extracted from freely available databases. Mean GMV, WMV, total intracranial volume (TIV), and mean age at scan were the main outcome measures. Of 532 identified records, nine studies were included with 538 PT born subjects between 1.1 and 28.5 years of age. Reference data was generated from 880 FT controls between 1 and 30 years of age. GMV was consistently lower in PT born individuals from infancy to early adulthood with no evidence for catch-up growth. While GMV changes followed a similar trajectory as FT controls, WMV was particularly low in adolescence after PT birth. Results demonstrate altered brain volumes after PT birth across the first half of lifespan. Future studies should address this issue in large aggregated datasets of PT born individuals.

11.
Hum Brain Mapp ; 42(18): 5862-5872, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34520080

ABSTRACT

In the last two decades, neuroscience has produced intriguing evidence for a central role of the claustrum in mammalian forebrain structure and function. However, relatively few in vivo studies of the claustrum exist in humans. A reason for this may be the delicate and sheet-like structure of the claustrum lying between the insular cortex and the putamen, which makes it not amenable to conventional segmentation methods. Recently, Deep Learning (DL) based approaches have been successfully introduced for automated segmentation of complex, subcortical brain structures. In the following, we present a multi-view DL-based approach to segment the claustrum in T1-weighted MRI scans. We trained and evaluated the proposed method in 181 individuals, using bilateral manual claustrum annotations by an expert neuroradiologist as reference standard. Cross-validation experiments yielded median volumetric similarity, robust Hausdorff distance, and Dice score of 93.3%, 1.41 mm, and 71.8%, respectively, representing equal or superior segmentation performance compared to human intra-rater reliability. The leave-one-scanner-out evaluation showed good transferability of the algorithm to images from unseen scanners at slightly inferior performance. Furthermore, we found that DL-based claustrum segmentation benefits from multi-view information and requires a sample size of around 75 MRI scans in the training set. We conclude that the developed algorithm allows for robust automated claustrum segmentation and thus yields considerable potential for facilitating MRI-based research of the human claustrum. The software and models of our method are made publicly available.


Subject(s)
Claustrum/anatomy & histology , Claustrum/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Humans
12.
Neuroimage Clin ; 31: 102780, 2021.
Article in English | MEDLINE | ID: mdl-34391140

ABSTRACT

While it is known that whole amygdala volume is lastingly reduced after premature birth, it is unknown whether different amygdala nuclei are distinctively affected by prematurity. This question is motivated by two points: First, the observation that developmental trajectories of superficial, centromedial and basolateral amygdala nuclei are different. And second, the expectation that these different developmental pathways are distinctively affected by prematurity. Furthermore, we stated the question whether alterations in amygdala nuclei are associated with increased adults' anxiety traits after premature birth. We investigated 101 very premature-born adults (<32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls of a prospectively and longitudinally collected cohort at 26 years of age using automated amygdala nuclei segmentation based on structural MRI. We found selectively reduced volumes of bilateral accessory basal nuclei (pertaining to the basolateral amygdala of claustral developmental trajectory) adjusted for whole amygdala volume. Volumes of bilateral accessory basal nuclei were positively associated with gestational age and negatively associated with duration of ventilation. Furthermore, structural covariance within the basolateral amygdala was increased in premature-born adults. We did not find an association between reduced volumes of basolateral amygdala and increased social anxiety in the prematurity group. These results demonstrate specifically altered basolateral amygdala structure in premature-born adults. Data suggest that prematurity has distinct effects on amygdala nuclei.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Adult , Amygdala/diagnostic imaging , Anxiety , Anxiety Disorders , Female , Gestational Age , Humans
13.
Cortex ; 141: 347-362, 2021 08.
Article in English | MEDLINE | ID: mdl-34126289

ABSTRACT

Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.


Subject(s)
Thalamus , White Matter , Adult , Brain , Diffusion Magnetic Resonance Imaging , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Pregnancy , Thalamus/diagnostic imaging , White Matter/diagnostic imaging
14.
Cereb Cortex ; 31(12): 5549-5559, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34171095

ABSTRACT

Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.


Subject(s)
Claustrum , Premature Birth , White Matter , Brain/pathology , Diffusion Magnetic Resonance Imaging , Female , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Very Low Birth Weight/physiology , Magnetic Resonance Imaging , Pregnancy , Premature Birth/pathology , White Matter/diagnostic imaging , White Matter/pathology
15.
Front Aging Neurosci ; 13: 653365, 2021.
Article in English | MEDLINE | ID: mdl-33867970

ABSTRACT

Recent evidence suggests increased metabolic and physiologic aging rates in premature-born adults. While the lasting consequences of premature birth on human brain development are known, its impact on brain aging remains unclear. We addressed the question of whether premature birth impacts brain age gap estimates (BrainAGE) using an accurate and robust machine-learning framework based on structural MRI in a large cohort of young premature-born adults (n = 101) and full-term (FT) controls (n = 111). Study participants are part of a geographically defined population study of premature-born individuals, which have been followed longitudinally from birth until young adulthood. We investigated the association between BrainAGE scores and perinatal variables as well as with outcomes of physical (total intracranial volume, TIV) and cognitive development (full-scale IQ, FS-IQ). We found increased BrainAGE in premature-born adults [median (interquartile range) = 1.4 (-1.3-4.7 years)] compared to full-term controls (p = 0.002, Cohen's d = 0.443), which was associated with low Gestational age (GA), low birth weight (BW), and increased neonatal treatment intensity but not with TIV or FS-IQ. In conclusion, results demonstrate elevated BrainAGE in premature-born adults, suggesting an increased risk for accelerated brain aging in human prematurity.

16.
Eur J Neurosci ; 53(10): 3362-3377, 2021 05.
Article in English | MEDLINE | ID: mdl-33764572

ABSTRACT

Visual information processing requires an efficient visual attention system. The neural theory of visual attention (TVA) proposes that visual processing speed depends on the coordinated activity between frontoparietal and occipital brain areas. Previous research has shown that the coordinated activity between (i.e., functional connectivity and "inter-FC") cingulo-opercular (COn) and right-frontoparietal (RFPn) networks is linked to visual processing speed. However, how inter-FC of COn and RFPn with visual networks links to visual processing speed has not been directly addressed yet. Forty-eight healthy adult participants (27 females) underwent resting-state (rs-)fMRI and performed a whole-report psychophysical task. To obtain inter-FC, we analyzed the entire frequency range available in our rs-fMRI data (i.e., 0.01-0.4 Hz) to avoid discarding neural information. Following previous approaches, we analyzed the data across frequency bins (Hz): Slow-5 (0.01-0.027), Slow-4 (0.027-0.073), Slow-3 (0.073-0.198), and Slow-2 (0.198-0.4). We used the mathematical TVA framework to estimate an individual, latent-level visual processing speed parameter. We found that visual processing speed was negatively associated with inter-FC between RFPn and visual networks in Slow-5 and Slow-2, with no corresponding significant association for inter-FC between COn and visual networks. These results provide the first empirical evidence that links inter-FC between RFPn and visual networks with the visual processing speed parameter. These findings suggest that direct connectivity between occipital and right frontoparietal, but not frontoinsular, regions support visual processing speed.


Subject(s)
Brain Mapping , Visual Perception , Adult , Brain , Cognition , Female , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
17.
Sci Rep ; 11(1): 5403, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686187

ABSTRACT

Premature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort. We found significantly lower whole amygdala volumes in premature-born adults. While premature-born adults had significantly higher T score for avoidant personality reflecting increased social anxiety trait, this trait was not correlated with amygdala volume alterations. Results demonstrate reduced amygdala volumes in premature born adults. Data suggest lasting effects of prematurity on amygdala structure.


Subject(s)
Amygdala , Anxiety/diagnostic imaging , Infant, Premature , Magnetic Resonance Imaging , Premature Birth , Adult , Amygdala/diagnostic imaging , Amygdala/growth & development , Female , Follow-Up Studies , Humans , Male
18.
Clin Neuroradiol ; 31(2): 325-333, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32291477

ABSTRACT

BACKGROUND AND PURPOSE: Qualitative studies about the abnormalities appreciated on routine magnetic resonance imaging (MRI) sequences in prematurely born adults are lacking. This article aimed at filling this knowledge gap by (1) qualitatively describing routine imaging findings in prematurely born adults, (2) evaluating measures for routine image interpretation and (3) investigating the impact of perinatal variables related to premature birth. METHODS: In this study two board-certified radiologists assessed T1-weighted and FLAIR-weighted images of 100 prematurely born adults born very preterm (VP <32 weeks) and/or at very low birth weight (VLBW <1500 g) and 106 controls born at full term (FT) (mean age 26.8 ± 0.7 years). The number of white matter lesions (WML) was counted according to localization. Lateral ventricle volume (LVV) was evaluated subjectively and by measurements of Evans' index (EI) and frontal-occipital-horn ratio (FOHR). Freesurfer-based volumetry served as reference standard. Miscellaneous incidental findings were noted as free text. RESULTS: The LVV was increased in 24.7% of VP/VLBW individuals and significantly larger than in FT controls. This was best identified by measurement of FOHR (AUC = 0.928). Ventricular enlargement was predicted by low gestational age (odds ratio: 0.71, 95% CI 0.51-0.98) and presence of neonatal intracranial hemorrhage (odds ratio: 0.26, 95% CI 0.07-0.92). The numbers of deep and periventricular WML were increased while subcortical WMLs were not. CONCLUSION: Enlargement of the LVV and deep and periventricular WMLs are typical sequelae of premature birth that can be appreciated on routine brain MRI. To increase sensitivity of abnormal LVV detection, measurement of FOHR seems feasible in clinical practice.


Subject(s)
Premature Birth , Adult , Brain/diagnostic imaging , Female , Humans , Incidental Findings , Infant, Newborn , Infant, Very Low Birth Weight , Magnetic Resonance Imaging , Male , Pregnancy , Premature Birth/diagnostic imaging
19.
Sci Rep ; 10(1): 17214, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057208

ABSTRACT

Premature-born adults exhibit lasting white matter alterations as demonstrated by widespread reduction in fractional anisotropy (FA) based on diffusion-weighted imaging (DWI). FA reduction, however, is non-specific for microscopic underpinnings such as aberrant myelination or fiber density (FD). Using recent advances in DWI, we tested the hypothesis of reduced FD in premature-born adults and investigated its link with the degree of prematurity and cognition. 73 premature- and 89 mature-born adults aged 25-27 years underwent single-shell DWI, from which a FD measure was derived using convex optimization modeling for microstructure informed tractography (COMMIT). Premature-born adults exhibited lower FD in numerous tracts including the corpus callosum and corona radiata compared to mature-born adults. These FD alterations were associated with both the degree of prematurity, as assessed via gestational age and birth weight, as well as with reduced cognition as measured by full-scale IQ. Finally, lower FD overlapped with lower FA, suggesting lower FD underlie unspecific FA reductions. Results provide evidence that premature birth leads to lower FD in adulthood which links with lower full-scale IQ. Data suggest that lower FD partly underpins FA reductions of premature birth but that other processes such as hypomyelination might also take place.


Subject(s)
Gestational Age , Nerve Fibers/pathology , Premature Birth , White Matter/diagnostic imaging , White Matter/pathology , Adult , Anisotropy , Birth Weight , Cognition , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Tensor Imaging/methods , Female , Humans , Male
20.
Hum Brain Mapp ; 41(17): 4952-4963, 2020 12.
Article in English | MEDLINE | ID: mdl-32820839

ABSTRACT

Cortical thickness (CTh) reflects cortical properties such as dendritic complexity and synaptic density, which are not only vulnerable to developmental disturbances caused by premature birth but also highly relevant for cognitive performance. We tested the hypotheses whether CTh in young adults is altered after premature birth and whether these aberrations are relevant for general cognitive abilities. We investigated CTh based on brain structural magnetic resonance imaging and surface-based morphometry in a large and prospectively collected cohort of 101 very premature-born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and 111 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. CTh was reduced in frontal, parietal, and temporal associative cortices predominantly in the left hemisphere in premature-born adults compared to controls. We found a significant positive association of CTh with both gestational age and BW, particularly in the left hemisphere, and a significant negative association between CTh and intensity of neonatal treatment within limited regions bilaterally. Full-scale IQ and CTh in the left hemisphere were positively correlated. Furthermore, CTh in the left hemisphere acted as a mediator on the association between premature birth and full-scale IQ. Results provide evidence that premature born adults have widespread reduced CTh that is relevant for their general cognitive performance. Data suggest lasting reductions in cortical microstructure subserving CTh after premature birth.


Subject(s)
Birth Weight/physiology , Cerebral Cortex/pathology , Cognition/physiology , Infant, Premature/physiology , Intelligence/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Gestational Age , Humans , Infant, Extremely Premature/physiology , Infant, Newborn , Longitudinal Studies , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...