Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vitam Horm ; 124: 341-366, 2024.
Article in English | MEDLINE | ID: mdl-38408802

ABSTRACT

This article discusses the physiological and anatomical changes of adrenal gland with age and the effects this has overall on how the organ responds to stress. Physiological changes entail a decrease in adrenocorticoid hormone secretion however cortisol levels remain intact leading to a disruptive stress response. Additionally, loss of zonation of the organ also occurs. Both characteristics in combination with chronic stress affect overall health. Complex interplay between adrenal aging and stress responsiveness is confounded further by the impact they expel on other systems, such as the thyroid hormone. The body undergoes age-related transformations modifying rate of cellular growth, differentiation, senescence, and hormone production. Given the multiplicity and complexity of hormones, their production must be considered to develop appropriate interventions to mitigate its effect on age related diseases in health.


Subject(s)
Adrenal Glands , Hormones , Humans , Thyroid Hormones , Aging
2.
Science ; 378(6617): eabq4835, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264786

ABSTRACT

Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.


Subject(s)
Mitochondria , Oocytes , RNA, Messenger, Stored , Animals , Female , Hydrogels , Mitochondria/genetics , Mitochondria/metabolism , Oocytes/metabolism , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Humans , Mice , Swine , Cattle , Egg Proteins/genetics , Egg Proteins/metabolism
3.
Science ; 375(6581): eabj3944, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35143306

ABSTRACT

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Subject(s)
Cell Cycle Proteins/metabolism , Kinesins/deficiency , Oocytes/physiology , Oocytes/ultrastructure , Spindle Apparatus/physiology , Spindle Poles/physiology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Animals , Cattle , Dynactin Complex/metabolism , Dyneins/metabolism , Female , Humans , Kinesins/genetics , Kinesins/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/physiology , Microtubule-Organizing Center/ultrastructure , Microtubules/metabolism , Recombinant Proteins/metabolism , Spindle Apparatus/ultrastructure , Spindle Poles/ultrastructure , Swine
4.
Front Cell Dev Biol ; 9: 723978, 2021.
Article in English | MEDLINE | ID: mdl-34957089

ABSTRACT

Abnormal uptake or metabolism of folate increases risk of human pregnancy complications, though the mechanism is unclear. Here, we explore how defective folate metabolism influences early development by analysing mice with the hypomorphic Mtrr gt mutation. MTRR is necessary for methyl group utilisation from folate metabolism, and the Mtrr gt allele disrupts this process. We show that the spectrum of phenotypes previously observed in Mtrr gt/gt conceptuses at embryonic day (E) 10.5 is apparent from E8.5 including developmental delay, congenital malformations, and placental phenotypes. Notably, we report misalignment of some Mtrr gt conceptuses within their implantation sites from E6.5. The degree of misorientation occurs across a continuum, with the most severe form visible upon gross dissection. Additionally, some Mtrr gt/gt conceptuses display twinning. Therefore, we implicate folate metabolism in blastocyst orientation and spacing at implantation. Skewed growth likely influences embryo development since developmental delay and heart malformations (but not defects in neural tube closure or trophoblast differentiation) associate with severe misalignment of Mtrr gt/gt conceptuses. Typically, the uterus is thought to guide conceptus orientation. To investigate a uterine effect of the Mtrr gt allele, we manipulate the maternal Mtrr genotype. Misaligned conceptuses were observed in litters of Mtrr +/+ , Mtrr +/gt , and Mtrr gt/gt mothers. While progesterone and/or BMP2 signalling might be disrupted, normal decidual morphology, patterning, and blood perfusion are evident at E6.5 regardless of conceptus orientation. These observations argue against a post-implantation uterine defect as a cause of conceptus misalignment. Since litters of Mtrr +/+ mothers display conceptus misalignment, a grandparental effect is explored. Multigenerational phenotype inheritance is characteristic of the Mtrr gt model, though the mechanism remains unclear. Genetic pedigree analysis reveals that severe conceptus skewing associates with the Mtrr genotype of either maternal grandparent. Moreover, the presence of conceptus skewing after embryo transfer into a control uterus indicates that misalignment is independent of the peri- and/or post-implantation uterus and instead is likely attributed to an embryonic mechanism that is epigenetically inherited. Overall, our data indicates that abnormal folate metabolism influences conceptus orientation over multiple generations with implications for subsequent development. This study casts light on the complex role of folate metabolism during development beyond a direct maternal effect.

5.
Reproduction ; 159(2): 115-132, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31751309

ABSTRACT

Assisted reproduction technologies (ARTs) are becoming increasingly common. Therefore, how these procedures influence gene regulation and foeto-placental development are important to explore. Here, we assess the effects of blastocyst transfer on mouse placental growth and transcriptome. C57Bl/6 blastocysts were transferred into uteri of B6D2F1 pseudopregnant females and dissected at embryonic day 10.5 for analysis. Compared to non-transferred controls, placentas from transferred conceptuses weighed less even though the embryos were larger on average. This suggested a compensatory increase in placental efficiency. RNA sequencing of whole male placentas revealed 543 differentially expressed genes (DEGs) after blastocyst transfer: 188 and 355 genes were downregulated and upregulated, respectively. DEGs were independently validated in male and female placentas. Bioinformatic analyses revealed that DEGs represented expression in all major placental cell types and included genes that are critical for placenta development and/or function. Furthermore, the direction of transcriptional change in response to blastocyst transfer implied an adaptive response to improve placental function to maintain foetal growth. Our analysis revealed that CpG methylation at regulatory regions of two DEGs was unchanged in female transferred placentas and that DEGs had fewer gene-associated CpG islands (within ~20 kb region) compared to the larger genome. These data suggested that altered methylation at proximal promoter regions might not lead to transcriptional disruption in transferred placentas. Genomic clustering of some DEGs warrants further investigation of long-range, cis-acting epigenetic mechanisms including histone modifications together with DNA methylation. We conclude that embryo transfer, a protocol required for ART, significantly impacts the placental transcriptome and growth.

6.
J Physiol ; 596(18): 4341-4360, 2018 09.
Article in English | MEDLINE | ID: mdl-30024025

ABSTRACT

KEY POINTS: Folate (folic acid) deficiency and mutations in folate-related genes in humans result in megaloblastic anaemia. Folate metabolism, which requires the enzyme methionine synthase reductase (MTRR), is necessary for DNA synthesis and the transmission of one-carbon methyl groups for cellular methylation. In this study, we show that the hypomorphic Mtrrgt/gt mutation in mice results in late-onset and sex-specific blood defects, including macrocytic anaemia, extramedullary haematopoiesis and lymphopenia. Notably, when either parent carries an Mtrrgt allele, blood phenotypes result in their genetically wildtype adult daughters, the effects of which are parent specific. Our data establish a new model for studying the mechanism of folate metabolism in macrocytic anaemia aetiology and suggest that assessing parental folate status might be important when diagnosing adult patients with unexplained anaemia. ABSTRACT: The importance of the vitamin folate (also known as folic acid) in erythrocyte formation, maturation and/or longevity is apparent since folate deficiency in humans causes megaloblastic anaemia. Megaloblastic anaemia is a type of macrocytic anaemia whereby erythrocytes are enlarged and fewer in number. Folate metabolism is required for thymidine synthesis and one-carbon metabolism, though its specific role in erythropoiesis is not well understood. Methionine synthase reductase (MTRR) is a key enzyme necessary for the progression of folate metabolism since knocking down the Mtrr gene in mice results in hyperhomocysteinaemia and global DNA hypomethylation. We demonstrate here that abnormal folate metabolism in mice caused by Mtrrgt/gt homozygosity leads to haematopoietic phenotypes that are sex and age dependent. Specifically, Mtrrgt/gt female mice displayed macrocytic anaemia, which might be due to defective erythroid differentiation at the exclusion of haemolysis. This was associated with increased renal Epo mRNA expression, hypercellular bone marrow, and splenic extramedullary haematopoiesis. In contrast, the male response differed since Mtrrgt/gt male mice were not anaemic but did display erythrocytic macrocytosis and lymphopenia. Regardless of sex, these phenotypes were late onset. Remarkably, we also show that when either parent carries an Mtrrgt allele, a haematological defect results in their adult wildtype daughters. However, the specific phenotype was dependent upon the sex of the parent. For instance, wildtype daughters of Mtrr+/gt females displayed normocytic anaemia. In contrast, wildtype daughters of Mtrr+/gt males exhibited erythrocytic microcytosis not associated with anaemia. Therefore, abnormal folate metabolism affects adult haematopoiesis in an age-, sex- and parent-specific manner.


Subject(s)
Anemia, Megaloblastic/genetics , Ferredoxin-NADP Reductase/genetics , Folic Acid Deficiency/genetics , Hematopoiesis , Age Factors , Anemia, Megaloblastic/blood , Animals , Cells, Cultured , Female , Folic Acid/metabolism , Folic Acid Deficiency/blood , Homozygote , Male , Mice , Mice, Inbred C57BL , Sex Factors
7.
Environ Epigenet ; 3(4): dvx014, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29492317

ABSTRACT

The exposure to adverse environmental conditions (e.g. poor nutrition) may lead to increased disease risk in an individual and their descendants. In some cases, the results may be sexually dimorphic. A range of phenotypes has been associated with deficiency in or defective metabolism of the vitamin folate. However, the molecular mechanism linking folate metabolism to development is still not well defined nor is it clear whether phenotypes are sex-specific. The enzyme methionine synthase reductase (MTRR) is required for the progression of folate metabolism and the utilization of methyl groups from the folate cycle. Previously, we showed that the hypomorphic Mtrrgt mutation in mice results in metabolic disruption, epigenetic instability, and a wide spectrum of developmental phenotypes (e.g. growth defects, congenital malformations) at midgestation that appear in subsequent wild-type generations. This transgenerational effect only occurs through the maternal lineage. Here, we explore whether the phenotypes that result from either intrinsic or ancestral Mtrr deficiency are sexually dimorphic. We found that no sexual dimorphism is apparent in either situation when the phenotypes were broadly or specifically defined. However, when we focused on the group of phenotypically normal conceptuses derived from maternal grandparental Mtrr deficiency, we observed an apparent increase in placental efficiency in each subsequent generation leading to F4 generation female embryos that weigh more than controls. These data suggest that ancestral abnormal folate metabolism may lead to male grandprogeny that are less able to adapt or female grandprogeny that are programmed to become more sensitive to folate availability in subsequent generations.

SELECTION OF CITATIONS
SEARCH DETAIL
...