Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668589

ABSTRACT

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Subject(s)
Cloning, Molecular , Coral Snakes , Elapid Venoms , Muscle, Skeletal , Receptors, Nicotinic , Animals , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/genetics , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Amino Acid Sequence , Male
2.
Toxins, v. 16, n. 4, 164, mar. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5321

ABSTRACT

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve–diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.

3.
Int J Biol Macromol, v. 253, n. 6, 127279, dez, 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5144

ABSTRACT

Snakebite envenomation is classified as a Neglected Tropical Disease. Bothrops jararaca venom induces kidney injury and coagulopathy. HF3, a hemorrhagic metalloproteinase of B. jararaca venom, participates in the envenomation pathogenesis. We evaluated the effects of HF3 in mouse kidney and blood plasma after injection in the thigh muscle, mimicking a snakebite. Transcriptomic analysis showed differential expression of 31 and 137 genes related to kidney pathology after 2 h and 6 h, respectively. However, only subtle changes were observed in kidney proteome, with differential abundance of 15 proteins after 6 h, including kidney injury markers. N-terminomic analysis of kidney proteins showed 420 proteinase-generated peptides compatible with meprin specificity, indicating activation of host proteinases. Plasma analysis revealed differential abundance of 90 and 219 proteins, respectively, after 2 h and 6 h, including coagulation-cascade and complement-system components, and creatine-kinase, whereas a semi-specific search of N-terminal peptides indicated activation of endogenous proteinases. HF3 promoted host reactions, altering the gene expression and the proteolytic profile of kidney tissue, and inducing plasma proteome imbalance driven by changes in abundance and proteolysis. The overall response of the mouse underscores the systemic action of a hemorrhagic toxin that transcends local tissue damage and is related to known venom-induced systemic effects.

4.
Biochimie, v. 204, 140-153, jan. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4557

ABSTRACT

Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.

5.
Toxins, v. 13, n. 11, 764, out. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4006

ABSTRACT

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.

6.
Oncotarget ; 11(51): 4770-4787, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33473260

ABSTRACT

Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.

7.
Oncotarget, v. 11, n. 51, p. 4770-4787, dez. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3473

ABSTRACT

Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.

8.
Sci Rep, v. 10, 12912, jul. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3121

ABSTRACT

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.

9.
J Proteomics, v. 198, p. 163-176, abr. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2694

ABSTRACT

Manifestations of local tissue damage, such as hemorrhage and myonecrosis, are among the most dramatic effects of envenomation by viperid snakes. Snake venom metalloproteinases (SVMPs) of the P-III class are main players of the hemorrhagic effect due to their activities in promoting blood vessel disruption. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, shows a minimum hemorrhagic dose of 240 fmol on rabbit skin. The aim of this study was to assess the effects of a sub-cytotoxic dose of HF3 (50nM) on the proteomic profile of C2C12 differentiated cells (myotubes) in culture, and on the peptidomic profile of the culture supernatant. Quantitative proteomic analysis using stable-isotope dimethyl labeling showed differential abundance of various proteins including enzymes involved in oxidative stress and inflammation responses. Identification of peptides in the supernatant of HF3-treated myotubes revealed proteolysis and pointed out potential new substrates of HF3, including glyceraldehyde-3-phosphate dehydrogenase, and some damage-associated molecular patterns (DAMPs). These experiments demonstrate the subtle effects of HF3 on muscle cells and illustrate for the first time the early proteolytic events triggered by HF3 on myotubes. Moreover, they may contribute to future studies aimed at explaining the inflammation process, hemorrhage and myonecrosis caused by SVMPs. Significance One of the main features of viperid snake envenomation is myotoxicity at the bite site, which, in turn is often associated with edema, blistering and hemorrhage, composing a complex pattern of local tissue damage. In this scenario, besides muscle cells, other types of cells, components of the extracellular matrix and blood vessels may also be affected, resulting in an outcome of deficient muscle regeneration. The main venom components participating in this pathology are metalloproteinases and phospholipases A2. Muscle necrosis induced by metalloproteinases is considered as an indirect effect related to ischemia, due to hemorrhage resulted from damage to the microvasculature. The pathogenesis of local effects induced by Bothrops venoms or isolated toxins has been studied by traditional methodologies. More recently, proteomic and peptidomic approaches have been used to study venom-induced pathogenesis. Here, in order to investigate the role of metalloproteinase activity in local tissue damage, we asked whether the hemorrhagic metalloproteinase HF3, at sub-cytotoxic levels, could alter the proteome of C2C12 myotubes in culture, thereby providing an insight into the mechanisms for the development of myonecrosis. Our results from mass spectrometric analyses showed subtle, early changes in the cells, including differential abundance of some proteins and proteolysis in the culture supernatant. The data illustrate the potential ability of metalloproteinases to trigger early systemic responses progressing from local cells and up to tissues.

10.
Comp Biochem Physiol Part D Genomics Proteomics, v. 30, p. 113-121, jan. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2678

ABSTRACT

Snake venoms are extremely active biological secretions composed primarily of various classes of enzymes. The genusBothropscomprises various pit viper speciesthat represent the most medically significant taxa in Central and South America, accounting for more human envenomations and fatalities than any other snakes inthe region. Venom proteomes of manyBothropsspecies have been well-characterized but investigations have focused almost exclusively on proteins smaller than100 kDa despite expression of larger components being documented in severalBothropsvenoms. This study sought to achieve detailed identification of majorcomponents in the high molecular mass subproteome of venoms from eightBothropsspecies (B.brazili,B.cotiara,B.insularis,B.jararaca,B.jararacussu,B.leucurus,B.moojeniandB. neuwiedi). Enzymes such as metalloproteinases and L-amino acid oxidases were the most prominent components identified in the first size-exclusionchromatography fractions of these venoms. Minor components also identified in the first peaks included 5'-nucleotidase, aminopeptidase, phosphodiesterase, andphospholipases A2and B. Most of these components disappeared in electrophoretic profiles under reducing conditions, suggesting that they may be composed of morethan one polypeptide chain. A significant shift in the molecular masses of these protein bands was observed following enzymatic N-deglycosylation, indicating thatthey may contain N-glycans. Furthermore, none of the identified high molecular mass proteins were shared by all eight species, revealing a high level of interspecificvariability among these venom components.

11.
J. Proteomics ; 198: p. 163-176, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15881

ABSTRACT

Manifestations of local tissue damage, such as hemorrhage and myonecrosis, are among the most dramatic effects of envenomation by viperid snakes. Snake venom metalloproteinases (SVMPs) of the P-III class are main players of the hemorrhagic effect due to their activities in promoting blood vessel disruption. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, shows a minimum hemorrhagic dose of 240 fmol on rabbit skin. The aim of this study was to assess the effects of a sub-cytotoxic dose of HF3 (50nM) on the proteomic profile of C2C12 differentiated cells (myotubes) in culture, and on the peptidomic profile of the culture supernatant. Quantitative proteomic analysis using stable-isotope dimethyl labeling showed differential abundance of various proteins including enzymes involved in oxidative stress and inflammation responses. Identification of peptides in the supernatant of HF3-treated myotubes revealed proteolysis and pointed out potential new substrates of HF3, including glyceraldehyde-3-phosphate dehydrogenase, and some damage-associated molecular patterns (DAMPs). These experiments demonstrate the subtle effects of HF3 on muscle cells and illustrate for the first time the early proteolytic events triggered by HF3 on myotubes. Moreover, they may contribute to future studies aimed at explaining the inflammation process, hemorrhage and myonecrosis caused by SVMPs. Significance One of the main features of viperid snake envenomation is myotoxicity at the bite site, which, in turn is often associated with edema, blistering and hemorrhage, composing a complex pattern of local tissue damage. In this scenario, besides muscle cells, other types of cells, components of the extracellular matrix and blood vessels may also be affected, resulting in an outcome of deficient muscle regeneration. The main venom components participating in this pathology are metalloproteinases and phospholipases A2. Muscle necrosis induced by metalloproteinases is considered as an indirect effect related to ischemia, due to hemorrhage resulted from damage to the microvasculature. The pathogenesis of local effects induced by Bothrops venoms or isolated toxins has been studied by traditional methodologies. More recently, proteomic and peptidomic approaches have been used to study venom-induced pathogenesis. Here, in order to investigate the role of metalloproteinase activity in local tissue damage, we asked whether the hemorrhagic metalloproteinase HF3, at sub-cytotoxic levels, could alter the proteome of C2C12 myotubes in culture, thereby providing an insight into the mechanisms for the development of myonecrosis. Our results from mass spectrometric analyses showed subtle, early changes in the cells, including differential abundance of some proteins and proteolysis in the culture supernatant. The data illustrate the potential ability of metalloproteinases to trigger early systemic responses progressing from local cells and up to tissues.

12.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15845

ABSTRACT

Snake venoms are extremely active biological secretions composed primarily of various classes of enzymes. The genusBothropscomprises various pit viper speciesthat represent the most medically significant taxa in Central and South America, accounting for more human envenomations and fatalities than any other snakes inthe region. Venom proteomes of manyBothropsspecies have been well-characterized but investigations have focused almost exclusively on proteins smaller than100 kDa despite expression of larger components being documented in severalBothropsvenoms. This study sought to achieve detailed identification of majorcomponents in the high molecular mass subproteome of venoms from eightBothropsspecies (B.brazili,B.cotiara,B.insularis,B.jararaca,B.jararacussu,B.leucurus,B.moojeniandB. neuwiedi). Enzymes such as metalloproteinases and L-amino acid oxidases were the most prominent components identified in the first size-exclusionchromatography fractions of these venoms. Minor components also identified in the first peaks included 5'-nucleotidase, aminopeptidase, phosphodiesterase, andphospholipases A2and B. Most of these components disappeared in electrophoretic profiles under reducing conditions, suggesting that they may be composed of morethan one polypeptide chain. A significant shift in the molecular masses of these protein bands was observed following enzymatic N-deglycosylation, indicating thatthey may contain N-glycans. Furthermore, none of the identified high molecular mass proteins were shared by all eight species, revealing a high level of interspecificvariability among these venom components.

13.
J Eukaryot Microbiol, v. 65, n. 3, p. 345-356, maio/jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2510

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

14.
Front Cell Infect Microbiol, v. 8, 92, mar. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2400

ABSTRACT

Leptospires are highly motile spirochetes equipped with strategies for efficient invasion and dissemination within the host. Our group previously demonstrated that pathogenic leptospires secrete proteases capable of cleaving and inactivating key molecules of the complement system, allowing these bacteria to circumvent host's innate immune defense mechanisms. Given the successful dissemination of leptospires during infection, we wondered if such proteases would target a broader range of host molecules. In the present study, the proteolytic activity of secreted leptospiral proteases against a panel of extracellular matrix (ECM) and plasma proteins was assessed. The culture supernatant of the virulent L. interrogans serovar Kennewicki strain Fromm (LPF) degraded human fibrinogen, plasma fibronectin, gelatin, and the proteoglycans decorin, biglycan, and lumican. Interestingly, human plasminogen was not cleaved by proteases present in the supernatants. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. Moreover, production of proteases might be an important virulence determinant since culture-attenuated or saprophytic Leptospira did not display proteolytic activity against ECM or plasma components. Exoproteomic analysis allowed the identification of three metalloproteases that could be involved in the degradation of host components. The ability to cleave conjunctive tissue molecules and coagulation cascade proteins may certainly contribute to invasion and tissue destruction observed upon infection with Leptospira.

15.
J. Eukaryot. Microbiol. ; 65(3): p. 345-356, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15270

ABSTRACT

Replication protein A (RPA), the major eukaryotic single-stranded binding protein, is a heterotrimeric complex formed by RPA-1, RPA-2, and RPA-3. RPA is a fundamental player in replication, repair, recombination, and checkpoint signaling. In addition, increasing evidences have been adding functions to RPA in telomere maintenance, such as interaction with telomerase to facilitate its activity and also involvement in telomere capping in some conditions. Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoa parasite that appears early in the evolution of eukaryotes. Recently, we have showed that T. cruzi RPA presents canonical functions being involved with DNA replication and DNA damage response. Here, we found by FISH/IF assays that T. cruzi RPA localizes at telomeres even outside replication (S) phase. In vitro analysis showed that one telomeric repeat is sufficient to bind RPA-1. Telomeric DNA induces different secondary structural modifications on RPA-1 in comparison with other types of DNA. In addition, RPA-1 presents a higher affinity for telomeric sequence compared to randomic sequence, suggesting that RPA may play specific roles in T. cruzi telomeric region.

16.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14889

ABSTRACT

Leptospires are highly motile spirochetes equipped with strategies for efficient invasion and dissemination within the host. Our group previously demonstrated that pathogenic leptospires secrete proteases capable of cleaving and inactivating key molecules of the complement system, allowing these bacteria to circumvent host's innate immune defense mechanisms. Given the successful dissemination of leptospires during infection, we wondered if such proteases would target a broader range of host molecules. In the present study, the proteolytic activity of secreted leptospiral proteases against a panel of extracellular matrix (ECM) and plasma proteins was assessed. The culture supernatant of the virulent L. interrogans serovar Kennewicki strain Fromm (LPF) degraded human fibrinogen, plasma fibronectin, gelatin, and the proteoglycans decorin, biglycan, and lumican. Interestingly, human plasminogen was not cleaved by proteases present in the supernatants. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. Moreover, production of proteases might be an important virulence determinant since culture-attenuated or saprophytic Leptospira did not display proteolytic activity against ECM or plasma components. Exoproteomic analysis allowed the identification of three metalloproteases that could be involved in the degradation of host components. The ability to cleave conjunctive tissue molecules and coagulation cascade proteins may certainly contribute to invasion and tissue destruction observed upon infection with Leptospira.

17.
Toxicon ; 137: 65-72, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28690013

ABSTRACT

Viperid snake venoms contain proteases that affect hemostasis by degrading important proteins such as those that participate in the coagulation cascade. The Bothrops jararaca venom presents as its main components metallo and serine proteases, which comprise around 65% of the venom composition. Bothropasin is a hemorrhagic metalloprotease from the B. jararaca venom which causes disruption of the basement membrane of the vascular endothelium, resulting in bleeding. Although the bothropasin ability to degrade plasmatic and extracellular matrix proteins in vitro has been described, the primary sequence of the released peptides is unknown. This research study presents the peptide identification from both fibrinogen and fibronectin, generated by bothropasin proteolytic activity. Among the fibrinogen derived peptides identified by mass spectrometry, analogous of endogenous products like the fibrinopeptides A and B were found, as well as other sequences described in the literature with vasoactive or antiangiogenic properties. A series of peptides derived from fibronectin by the action of bothropasin were described, and for most of them no biological activity has been described. However, exceptionally a peptide that is known as a bond site for B cells was found. This study indicates that, beyond to the degradation of human proteins, bothropasin can generate bioactive peptides, which may participate in the envenoming process by Bothrops snakes. Also important, the knowledge of the formed peptides, based on the cleavage sites of the hydrolyzed proteins, provided the opportunity to study the primary specificity of bothropasin.


Subject(s)
Crotalid Venoms/toxicity , Fibrinogen/metabolism , Fibronectins/metabolism , Metalloendopeptidases/metabolism , Peptides/pharmacology , Amino Acid Sequence , Animals , Bothrops , Crotalid Venoms/metabolism , Humans , Hydrolysis , Peptides/chemistry , Proteolysis
18.
Genome Biol Evol ; 8(8): 2266-87, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27412610

ABSTRACT

Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution.


Subject(s)
Colubridae/genetics , Evolution, Molecular , Snake Venoms/genetics , Animals , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lipase/genetics , Lipase/metabolism , Proteome/genetics , Proteome/metabolism , Snake Venoms/metabolism , Transcriptome
19.
Genome Biol. Evol ; 8(8): p. 2266-2287, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14552

ABSTRACT

Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution


Subject(s)
Toxicology
20.
Amino Acids ; 48(9): p. 2205-2214, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14313

ABSTRACT

Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues


Subject(s)
Toxicology , Cell Biology , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...