Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharmacol ; 818: 17-25, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29042208

ABSTRACT

Leflunomide, an immunosuppressive drug approved for the treatment of patients with rheumatoid arthritis, exhibits many mechanisms which may affect the nociceptive processing. Therefore, the present study aimed to evaluate the effect induced by leflunomide on the mechanical allodynia in models of inflammatory and neuropathic pain in mice and investigate mechanisms mediating such effects. Per os (p.o.) administration of leflunomide (25, 50 or 100mg/kg) inhibited the inflammatory edema and mechanical allodynia induced by intraplantar carrageenan. Even ongoing inflammatory edema and mechanical allodynia were reduced by leflunomide. Previous administration of naltrexone (10mg/kg, intraperitoneal) or glibenclamide (40mg/kg, p.o.) partially attenuated leflunomide antiallodynic activity. A single administration of leflunomide (50 or 100mg/kg, p.o.) also partially inhibited ongoing mechanical allodynia induced by chronic constriction injury (CCI) or repeated administrations of paclitaxel. The antiallodynic effect induced by leflunomide (50 or 100mg/kg, p.o.) in the model of neuropathic pain induced by CCI was associated with reduced production of tumor necrosis factor-α both at the injury site and ipsilateral paw. Leflunomide also reduced production of the chemokine CXCL-1 at the paw ipsilateral to the injury site. Concluding, leflunomide partially inhibited ongoing mechanical allodynia in models of inflammatory and neuropathic pain. The antiallodynic effect was associated with activation of opioidergic receptors and ATP-sensitive potassium channels and reduced production of inflammatory mediators. These data indicate leflunomide as a drug that should be further investigated aiming to identify a new analgesic pharmacotherapy and reinforces repositioning as an important strategy to identify new uses for approved drugs.


Subject(s)
Chemokine CXCL1/biosynthesis , Glyburide/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Isoxazoles/pharmacology , Naltrexone/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Isoxazoles/antagonists & inhibitors , Isoxazoles/therapeutic use , Leflunomide , Male , Mice , Neuralgia/drug therapy
2.
Pharmacol Rep ; 69(5): 1036-1043, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28958614

ABSTRACT

BACKGROUND: The effects induced by thiamine and riboflavin, isolated or in association with corticosteroids, in models of chronic inflammation are not known. Thus, we evaluated the effect induced by these B vitamins, isolated or in association with dexamethasone, on the mechanical allodynia, paw edema and cytokine production induced by complete Freund's adjuvant (CFA) in rats. METHODS: Chronic inflammation was induced by two injections of CFA. Nociceptive threshold, paw volume and body temperature were evaluated for 21days. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) contents were determined in paw tissue. Riboflavin (125, 250 or 500mg/kg) or thiamine (150, 300 or 600mg/kg) were administered per os (po), twice daily. Dexamethasone (0.5mg/kgday, po) was administered every three days. RESULTS: CFA induced long lasting mechanical allodynia and paw edema. Elevation of body temperature was observed for a short period. Riboflavin reduced neither paw edema nor mechanical allodynia. Thiamine did not change paw edema, but partially inhibited mechanical allodynia. Riboflavin (500mg/kg) and thiamine (600mg/kg) exacerbated the anti-inflammatory activity of dexamethasone. Riboflavin, thiamine and dexamethasone reduced TNF-α and IL-6 production. The association of dexamethasone with thiamine induced greater inhibition of IL-6 production when compared with that induced by dexamethasone. CONCLUSIONS: Riboflavin and thiamine exacerbate the anti-inflammatory activity of dexamethasone and reduce production of TNF-α and IL-6.


Subject(s)
Cytokines/metabolism , Dexamethasone/therapeutic use , Freund's Adjuvant/therapeutic use , Inflammation/drug therapy , Riboflavin/pharmacology , Thiamine/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Chronic Disease , Cytokines/genetics , Dexamethasone/administration & dosage , Drug Therapy, Combination , Female , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Rats , Rats, Sprague-Dawley , Riboflavin/administration & dosage , Thiamine/administration & dosage
3.
Pharmacol Rep ; 69(4): 691-695, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28550800

ABSTRACT

BACKGROUND: Phthalimide analogs have been shown to exhibit anti-inflammatory, analgesic and immunomodulatory activities in different preclinical assays. This study aimed to investigate the potential role of 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO) in a murine model of antigen-induced articular inflammation. METHODS: Articular inflammation was induced by intra-articular injection of methylated bovine serum albumin (mBSA) in the knee joint of immunized male C57BL/6J mice. The animals were pre-treated with PTD-OH or PTD-NO (500mg/kg, per os, - 1h). Nociceptive threshold was measured using an electronic von Frey apparatus. The total number of leukocytes in the synovial cavity was determined. Concentrations of tumor necrosis factor (TNF)-α and CXCL-1 and myeloperoxidase (MPO) activity were determined in periarticular tissue. RESULTS: Both PTD-OH and PTD-NO inhibited at similar extent the mechanical allodynia, neutrophil recruitment to the synovial cavity and periarticular tissue and TNF-α and CXCL-1 production induced by intra-articular challenge with mBSA in immunized mice. CONCLUSIONS: PTD-OH and PTD-NO exhibit a marked activity in a murine model of antigen-induced articular inflammation in immunized animals. These results reinforce the interest in the investigation of phthalimide analogs devoid of the glutarimide ring as candidates to analgesic and anti-inflammatory drugs.


Subject(s)
Cytokines/metabolism , Gene Expression Regulation/drug effects , Hyperalgesia/prevention & control , Neutrophils/drug effects , Phthalimides/pharmacology , Analgesics/pharmacology , Animals , Cytokines/genetics , Joint Diseases/chemically induced , Joint Diseases/drug therapy , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Phthalimides/chemistry , Serum Albumin, Bovine/immunology
4.
Eur J Pharmacol ; 756: 59-66, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25794846

ABSTRACT

The activities of 2-phthalimidethyl nitrate (PTD-NO) and 2-phthalimidethanol (PTD-OH) were recently demonstrated in models of pain and inflammation. We expanded our investigation by evaluating their activities in models of nociceptive and inflammatory pain and inflammatory edema, the preliminary pharmacokinetic parameter for PTD-NO and the role of opioid and cannabinoid pathways in the activity of analogs. Per os (p.o.) administration of PTD-NO or PTD-OH, 1h before intraplantar injection of formaldehyde, inhibited both phases of the nociceptive response (500 and 750 mg/kg) and paw edema (125, 250, 500 and 750 mg/kg). After p.o. administration of PTD-NO, peak plasma concentrations of PTD-NO and PTD-OH were found 0.92 and 1.13 h, respectively. The plasma concentrations of PTD-NO were higher than those of PTD-OH. Intraperitoneal (i.p.) administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists (4 or 8 mg/kg, -30 min) or opioid antagonist naltrexone (5 or 10mg/kg, -30 min) did not affect the antinociceptive activities of the analogs. AM251 (8 mg/kg, i.p., -30 min) attenuated the antiedematogenic activity of both analogs, while naltrexone (10mg/kg, i.p., -30 min) only attenuated the antiedematogenic activity of PTD-NO. The antiedematogenic activities of both analogs were not affected by the CB2 cannabinoid antagonist AM630 (4 or 8 mg/kg, i.p., -30 min). Concluding, we expanded the knowledge on the activities of PTD-NO and PTD-OH by showing that these phthalimide analogs also exhibit marked activity in models of nociceptive and inflammatory pain and inflammatory edema. Opioid and cannabinoid mechanisms partially mediate the anti-inflammatory, but not the antinociceptive activity.


Subject(s)
Analgesics/pharmacology , Edema/chemically induced , Edema/physiopathology , Formaldehyde/adverse effects , Nociception/drug effects , Phthalimides/pharmacology , Analgesics/therapeutic use , Animals , Edema/drug therapy , Male , Mice , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/physiopathology , Phthalimides/therapeutic use , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/antagonists & inhibitors
5.
Pharmacol Biochem Behav ; 122: 291-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24780502

ABSTRACT

The reintroduction of thalidomide in the pharmacotherapy greatly stimulated the interest in the synthesis and pharmacological evaluation of phthalimide analogs with new and improved activities and also greater safety. In the present study, we evaluated the activities of two phthalimide analogs devoid of the glutarimide ring, namely 2-phthalimidethanol (PTD-OH) and 2-phthalimidethyl nitrate (PTD-NO), in experimental models of inflammatory pain and edema in male C57BL/6J mice. Intraplantar (i.pl.) injection of carrageenan (300 µg) induced mechanical allodynia and this response was inhibited by previous per os (p.o.) administration of PTD-OH and PTD-NO (750 mg/kg) and also by thalidomide (500 or 750 mg/kg). The edema induced by carrageenan was also inhibited by previous p.o. administration of PTD-OH (500 and 750 mg/kg) and PTD-NO (125, 250, 500 or 750 mg/kg), but not by thalidomide. Carrageenan increased tumor necrosis factor (TNF)-α and CXCL1 concentrations and also the number of neutrophils in the paw tissue. Previous p.o. administration of PTD-NO (500 mg/kg) reduced all the parameters, while PTD-OH (500 mg/kg) reduced only the accumulation of neutrophils. Thalidomide, on the other hand, was devoid of effect on these biochemical parameters. Plasma concentrations of nitrite were increased after p.o. administration of the phthalimide analog coupled to a NO donor, PTD-NO (500 mg/kg), but not after administration of PTD-OH or thalidomide. In conclusion, our results show that small molecules, structurally much simpler than thalidomide or many of its analogs under investigation, exhibit similar activities in experimental models of pain and inflammation. Finally, as there is evidence that the glutarimide moiety contributes to the teratogenic effect of many thalidomide analogs, our results indicate that phthalimide analogs devoid of this functional group could represent a new class of analgesic and anti-inflammatory candidates with potential greater safety.


Subject(s)
Disease Models, Animal , Edema/drug therapy , Ketoglutaric Acids/chemistry , Pain Measurement/drug effects , Pain/drug therapy , Phthalimides/therapeutic use , Animals , Carrageenan/toxicity , Edema/chemically induced , Edema/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Pain/metabolism , Pain Measurement/methods , Phthalimides/chemistry
6.
Planta Med ; 80(8-9): 630-6, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24871207

ABSTRACT

Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation. Finally, multiple mechanisms, including the inhibition of the production of inflammatory mediators and activation of endogenous opioid pathways, may mediate azadirachtin activities in experimental models of inflammation and pain.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Azadirachta/chemistry , Edema/drug therapy , Limonins/pharmacology , Plant Extracts/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Carrageenan/adverse effects , Disease Models, Animal , Edema/chemically induced , Female , Inflammation/drug therapy , Limonins/chemistry , Limonins/isolation & purification , Mice , Nociception/drug effects , Pain/drug therapy , Plant Extracts/chemistry , Plant Extracts/isolation & purification
7.
Bioorg Med Chem ; 22(9): 2783-90, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24685703

ABSTRACT

Nicorandil (N-(2-hydroxyethyl)nicotinamide nitrate) is an antianginal drug, which activates guanylyl cyclase and opens the ATP-dependent K(+) channels, actions that have been suggested to mediate its vasodilator activity. We synthesized nicorandil and its two isomers, which vary in the positions of the side chain containing the nitric oxide (NO) donor, and also their corresponding denitrated metabolites. The activities of these compounds were evaluated in an experimental model of pain in mice. Pharmacokinetic parameters of nicorandil and its isomers, as well as the plasma concentrations of the corresponding denitrated metabolites and also nicotinamide and nitrite were determined. Nicorandil exhibited the highest antinociceptive activity, while the ortho-isomer was the least active. Nicorandil and para-nicorandil, which induced higher plasma concentrations of nitrite, exhibited higher antinociceptive activity, which suggests that the release of NO may mediate this activity.


Subject(s)
Analgesics/chemical synthesis , Nicorandil/chemistry , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Disease Models, Animal , Female , Half-Life , Isomerism , Mice , Nicorandil/pharmacokinetics , Nicorandil/therapeutic use , Pain/drug therapy
8.
Neurosci Lett ; 553: 110-4, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23973305

ABSTRACT

The research on sex differences in nociception and antinociception as well as sex and gender differences in pain and analgesia is a maturing field. There is a vast literature showing experimental and clinical pain suppressive effects induced by minocycline, especially in inflammatory pain. However, as far as we know, possible qualitative or quantitative sex differences in those effects remained to be examined. By employing the formalin test, which has two phases of experimental pain behavior that models nociceptive pain (i.e., first phase) and inflammatory pain (i.e., second phase), we initially evaluated the effect induced by minocycline in female or male C57BL/6 mice. The treatment reduced the second phase of licking behavior in both females and males, and the effects were quantitatively similar in both sexes. Likewise, the same sex-independent effect was observed in Swiss mice, suggesting a genotype-unspecific sex-independent effect. While minocycline is already being tested in clinical trials, this appears to be the first preclinical investigation of sex differences in the experimental pain suppressive effects induced by this widely studied drug. The independence of sex in the antinociceptive effect induced by minocycline may be hopefully translated to gender-independent analgesic effects, which would be surely promising in a therapeutic paradigm.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Minocycline/therapeutic use , Pain/drug therapy , Animals , Female , Inflammation/drug therapy , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Nociceptive Pain/drug therapy , Nociceptive Pain/physiopathology , Pain/physiopathology , Sex Factors , Species Specificity
9.
Pharmacol Biochem Behav ; 106: 85-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23537730

ABSTRACT

Nicorandil (2-nicotinamide ethyl nitrate), an antianginal drug characterized by the coupling of nicotinamide with a nitric oxide (NO) donor, activates guanylyl cyclase and opens ATP-dependent K(+) channels. In the present study, we investigated the effects induced by per os (p.o.) administration of nicorandil (12.5, 25 or 50 mg/kg) or equimolar doses (corresponding to the highest dose of nicorandil) of N-(2-hydroxyethyl) nicotinamide (NHN), its main metabolite, or nicotinamide in the model of nociceptive response induced by formaldehyde in mice. Nicorandil, but not NHN or nicotinamide, inhibited the second phase of the nociceptive response. This activity was observed when nicorandil was administered between 30 and 120 min before the injection of formaldehyde. Ipsilateral intraplantar injection of nicorandil (125, 250 or 500 µg/paw) did not inhibit the nociceptive response. After p.o. administration of nicorandil (50 mg/kg), peak plasma concentrations of this compound and NHN were observed 0.63 and 4 h later, respectively. Nicotinamide concentrations were not increased after administration of nicorandil. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 or 2 mg/kg), a guanylyl cyclase inhibitor, partially attenuated the antinociceptive activity of nicorandil. However, this activity was not changed by glibenclamide (30 or 60 mg/kg), an inhibitor of ATP-dependent K(+) channels. In conclusion, we demonstrated the antinociceptive activity of nicorandil in a model of pain that exhibits both a nociceptive and an inflammatory profile. This activity is not mediated by nicotinamide or NHN. The coupling of an NO-donor to nicotinamide results in a compound with an increased potency. The NO-cGMP pathway, but not ATP-dependent K(+) channels, partially mediates the antinociceptive activity of nicorandil.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Formaldehyde/toxicity , Nicorandil/pharmacology , Pain/prevention & control , Analgesics/blood , Animals , Dose-Response Relationship, Drug , Glyburide/pharmacology , Male , Mice , Nicorandil/blood , Oxadiazoles/pharmacology , Pain/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL