Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 96: 117535, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37956505

ABSTRACT

As Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR. Since the oxidative stress plays an important role in the pathological process of AD, the antioxidant activities of the newly synthesized compounds were first evaluated. Subsequently, selected active compounds were further screened in a series of AD-related bioassays, including Aß1-42 self-aggregation and deaggregation, BACE-1 inhibition, metal chelation, and protection of SH-SY5Y cells from H2O2-induced oxidative damage. Compound A3B3C1 represented the best one with multifunctional potencies. Mechanism study showed that A3B3C1 acted on Nrf2/ARE signaling pathway, thus increasing the expression of related antioxidant proteins NQO1 and HO-1 to normal cell level. Furthermore, A3B3C1 showed good in vitro human plasma and liver microsome stability, indicating a potential for further development as multifunctional anti-AD agent.


Subject(s)
Alzheimer Disease , Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Cholinesterase Inhibitors/pharmacology , Oxidative Stress , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Drug Design , Acetylcholinesterase/metabolism
2.
Eur J Med Chem ; 259: 115686, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37536208

ABSTRACT

To develop more potent HIV-1 inhibitors against a variety of NNRTIs-resistant strains, a series of 5-cyano substituted diarylpyridines was designed based on the cocrystal structural analysis. Among them, I-5b showed the greatest potency (EC50 = 5.62-171 nM) against the wild-type (WT) and mutant HIV-1 strains. Especially for K103 N, I-5b exhibited outstanding activity with EC50 values of 9.37 nM, being much superior to that of NVP (EC50 = 5128 nM) and EFV (EC50 = 114 nM) and comparable to that of ETR (EC50 = 3.45 nM). In addition, the target of all compounds was turned out to be HIV-1 RT with moderate RT enzyme inhibitory activity (IC50 = 0.094-12.0 µM). Moreover, the binding mode of representative compounds with RT was elaborated via molecular docking.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Drug Design , HIV Reverse Transcriptase , Reverse Transcriptase Inhibitors/chemistry
3.
Bioorg Chem ; 134: 106465, 2023 05.
Article in English | MEDLINE | ID: mdl-36933339

ABSTRACT

Butyrylcholinesterase is regarded as a promising drug target in advanced Alzheimer's disease. In order to identify highly selective and potent BuChE inhibitors, a 53-membered compound library was constructed via the oxime-based tethering approach based on microscale synthesis. Although A2Q17 and A3Q12 exhibited higher BuChE selectivity versus acetylcholinesterase, the inhibitory activities were unsatisfactory and A3Q12 did not inhibit Aß1-42 peptide self-induced aggregation. With A2Q17 and A3Q12 as leads, a novel series of tacrine derivatives with nitrogen-containing heterocycles were designed based on conformation restriction strategy. The results demonstrated that 39 (IC50 = 3.49 nM) and 43 (IC50 = 7.44 nM) yielded much improved hBuChE inhibitory activity compared to the lead A3Q12 (IC50 = 63 nM). Besides, the selectivity indexes (SI = AChE IC50 / BChE IC50) of 39 (SI = 33) and 43 (SI = 20) were also higher than A3Q12 (SI = 14). The results of the kinetic study showed that 39 and 43 exhibited a mixed-type inhibition against eqBuChE with respective Ki values of 1.715 nM and 0.781 nM. And 39 and 43 could inhibit Aß1-42 peptide self-induced aggregation into fibril. X-ray crystallography structures of 39 or 43 complexes with BuChE revealed the molecular basis for their high potency. Thus, 39 and 43 are deserve for further study to develop potential drug candidates for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Butyrylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Crystallography , Structure-Activity Relationship , Amyloid beta-Peptides , Molecular Docking Simulation , Molecular Structure
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674730

ABSTRACT

This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.


Subject(s)
Anti-HIV Agents , HIV-1 , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , HIV-1/metabolism , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/metabolism , Drug Design , Structure-Activity Relationship
5.
J Med Chem ; 66(3): 2102-2115, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36700940

ABSTRACT

Although non-nucleoside reverse transcriptase inhibitors (NNRTIs) exhibit potent anti-HIV-1 activity and play an important role in the active antiretroviral therapy of AIDS, the emergence of drug-resistant strains has seriously reduced their clinical efficacy. Here, we report a series of 2,4,5-trisubstituted pyrimidines as potent HIV-1 NNRTIs by exploiting the tolerant regions of the NNRTI binding pocket. Compounds 16b and 16c were demonstrated to have excellent activity (EC50 = 3.14-22.1 nM) against wild-type and a panel of mutant HIV-1 strains, being much superior to that of etravirine (EC50 = 3.53-52.2 nM). Molecular modeling studies were performed to illustrate the detailed interactions between RT and 16b, which shed light on the improvement of the drug resistance profiles. Moreover, 16b possessed favorable pharmacokinetic (T1/2 = 1.33 h, F = 31.8%) and safety profiles (LD50 > 2000 mg/kg), making it a promising anti-HIV-1 drug candidate for further development.


Subject(s)
Anti-HIV Agents , HIV-1 , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship , HIV Reverse Transcriptase/metabolism , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , HIV-1/metabolism , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...