Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748249

ABSTRACT

Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).


Subject(s)
Bacteria , Mitochondria , Humans , Bacteria/metabolism , Mitochondria/metabolism , Animals , Organelles/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/microbiology , Lysosomes/metabolism , Lysosomes/microbiology , Host-Pathogen Interactions
3.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38590362

ABSTRACT

The scaffolding function of receptor interacting protein kinase 1 (RIPK1) confers intrinsic and extrinsic resistance to immune checkpoint blockades (ICBs) and has emerged as a promising target for improving cancer immunotherapies. To address the challenge posed by a poorly defined binding pocket within the intermediate domain, we harnessed proteolysis targeting chimera (PROTAC) technology to develop a first-in-class RIPK1 degrader, LD4172. LD4172 exhibited potent and selective RIPK1 degradation both in vitro and in vivo . Degradation of RIPK1 by LD4172 triggered immunogenic cell death (ICD) and enriched tumor-infiltrating lymphocytes and substantially sensitized the tumors to anti-PD1 therapy. This work reports the first RIPK1 degrader that serves as a chemical probe for investigating the scaffolding functions of RIPK1 and as a potential therapeutic agent to enhance tumor responses to immune checkpoint blockade therapy.

4.
Article in Chinese | MEDLINE | ID: mdl-38538236

ABSTRACT

Objective: To investigate the differences and applicability of free silica detection methods of different crystal forms in dust, and to provide a basis for the selection of various methods. Methods: From December 2021 to June 2022, dust samples from 20 enterprises in different industries in 18 cities in Henan Province were randomly selected as the investigation objects. X-ray diffraction (XRD) method was used to analyze the samples and classify the samples. Based on GBZ/T 192.4-2007 "Determination of Dust in the Air of Workplace-Part 4: Content of Free Silica in Dust", pyrophosphate method and infrared spectrophotometry were used for quantitative determination. The measured results were analyzed by paired sample t test to evaluate the advantages and disadvantages of the two methods and their applicable scope. Results: The XRD results of 20 dust samples could be divided into α, ß, γ crystal types and the mixed type of α and γ. There was no significant difference between pyrophosphate method and infrared spectrophotometry (P=0.180). The pyrophosphate method results of ß, γ and α, γ mixed crystalline free silica were significantly higher than those of infrared spectrophotometry, and the difference was statistically significant (P<0.001) . Conclusion: Pyrophosphate method and infrared spectrophotometry are suitable for α-type free silica, while pyrophosphate method is suitable for ß, γ and α, γ mixed crystalline free silica.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Silicon Dioxide/analysis , Diphosphates , Dust/analysis , Spectrophotometry, Infrared , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis
5.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38438248

ABSTRACT

Myocardial lipid metabolism is critical to normal heart function, whereas altered lipid regulation has been linked to cardiac diseases including cardiomyopathies. Genetic variants in the JPH2 gene can cause hypertrophic cardiomyopathy (HCM) and, in some cases, dilated cardiomyopathy (DCM). In this study, we tested the hypothesis that JPH2 variants identified in patients with HCM and DCM, respectively, cause distinct alterations in myocardial lipid profiles. Echocardiography revealed clinically significant cardiac dysfunction in both knock-in mouse models of cardiomyopathy. Unbiased myocardial lipidomic analysis demonstrated significantly reduced levels of total unsaturated fatty acids, ceramides, and various phospholipids in both mice with HCM and DCM, suggesting a common metabolic alteration in both models. On the contrary, significantly increased di- and triglycerides, and decreased co-enzyme were only found in mice with HCM. Moreover, mice with DCM uniquely exhibited elevated levels of cholesterol ester. Further in-depth analysis revealed significantly altered metabolites from all the lipid classes with either similar or opposing trends in JPH2 mutant mice with HCM or DCM. Together, these studies revealed, for the first time, unique alterations in the cardiac lipid composition-including distinct increases in neutral lipids and decreases in polar membrane lipids-in mice with HCM and DCM were caused by distinct JPH2 variants. These studies may aid the development of novel biomarkers or therapeutics for these inherited disorders.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Heart Diseases , Animals , Humans , Mice , Cardiomyopathies/genetics , Cardiomyopathy, Dilated/genetics , Ceramides , Membrane Proteins/genetics , Myocardium
7.
Nat Metab ; 6(1): 6-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38167729
8.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240316

ABSTRACT

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.


Subject(s)
Lysosomes , Proteomics , Lysosomes/metabolism , Intracellular Membranes/metabolism , Proteome/metabolism , Signal Transduction
9.
Zhonghua Wai Ke Za Zhi ; 62(1): 58-65, 2023 Dec 01.
Article in Chinese | MEDLINE | ID: mdl-38044609

ABSTRACT

Objective: To compare the patient-reported outcomes and short-term clinical outcomes between robotic-assisted and laparoscopic-assisted radical gastrectomy for locally advanced gastric cancer. Methods: This single-center prospective randomized controlled trial was conducted in the Department of Gastrointestinal Surgery,Affiliated Hospital of Qingdao University from October 2020 to August 2022. Patients with locally advanced gastric cancer who were to undergo radical gastrectomy were selected and randomly divided into two groups according to 1∶1, and received robotic surgery and laparoscopic surgery, respectively. Patient-reported outcomes and short-term clinical outcomes (including postoperative complications, surgical quality and postoperative short-term recovery) were compared between the two groups by t test, Mann-Whitney U test, repeated ANOVA, generalized estimating equation, χ2 test and Fisher's exact test. Results: A total of 237 patients were enrolled for modified intention-to-treat analysis (120 patients in the robotic group, 117 patients in the laparoscopic group). There were 180 males and 59 females, aged (63.0±10.2) years (range: 30 to 85 years). The incidence of postoperative complications was similar between the robotic group and laparoscopic group (16.7% (20/120) vs. 15.4% (18/117), χ2=0.072, P=0.788). The robotic group had higher patient-reported outcomes scores in general health status, emotional, and social domains compared to the laparoscopic group, differences in time effect, intervention effect, and interaction effect were statistically significant (general health status: χ2 value were 275.68, 3.91, 6.38, P value were <0.01, 0.048, 0.041; emotional: χ2 value were 77.79, 6.04, 6.15, P value were <0.01, 0.014, 0.046; social: χ2 value were 148.00, 7.57, 5.98, P value were <0.01, 0.006, 0.048). However, the financial burden of the robotic group was higher, the differences in time effect, intervention effect and interaction effect were statistically significant (χ2 value were 156.24, 4.08, 36.56, P value were<0.01, 0.043,<0.01). Conclusion: Compared to the laparoscopic group, the robotic group could more effectively relieve postoperative negative emotions and improve recovery of social function in patients.

10.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106013

ABSTRACT

Objectives: Triglyceride (TG) association with apolipoprotein B100 (apoB100) serves to form very low density lipoproteins (VLDL) in the liver. The repertoire of factors that facilitate this association is incompletely defined. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytoplasmic lipid droplets (LDs) in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. Methods: Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, simulated Raman spectroscopy (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. Main findings: 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to LDL density; 3) Both in vitro and in vivo , when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. Principal conclusions: The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be a limiting factor that ultimately contributes to non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH).

12.
Zhonghua Yi Xue Za Zhi ; 103(39): 3127-3132, 2023 Oct 24.
Article in Chinese | MEDLINE | ID: mdl-37840184

ABSTRACT

Objective: To investigate the clinical efficacy of posterior cervical open-door expansive laminoplasty combined with Key-hole technique in treating mixed cervical spondylosis. Methods: A retrospective cohort study. A retrospective analysis was made of 128 cases of mixed cervical spondylosis with symptoms of spinal cord and nerve root compression and complete follow-up data admitted to the Department of Spinal Surgery, Affiliated Hospital of Jining Medical University from January 2016 to June 2022. Of the patients, there were 90 males and 38 females with a mean age of (58.5±9.8) years. Before February 2018, 72 cases were treated with posterior cervical open-door expansive laminoplasty (single-door group), and after February 2018, 56 cases were treated with posterior cervical open-door expansive laminoplasty combined with Key-hole technique (combined group). There was no significant difference between the two groups in age, Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score of pain and Cobb angle of imaging before operation. The operation time, intraoperative blood loss, postoperative JOA score, VAS score and Cobb angle of imaging were compared between the two groups. Results: Both groups of patients successfully completed the operation. Operation time [M(Q1, Q3)]: 89.0 (68.5, 104.5) min in the single-door group and 90.0 (72.8, 108.8) min in the combined group, there was no statistical difference between the two groups (P=0.640). The intraoperative blood loss in the single-door group was 100 (100, 200) ml, and it was 100(100, 200) ml in the combined group, there was no significant difference between the two groups (P=0.680). Postoperative JOA scores increased significantly, while VAS scores decreased significantly in both groups. At the last follow-up, the JOA and VAS scores of the combined group were better than those of the single-door group (both P<0.05). Conclusion: The posterior cervical open-door expansive laminoplasty combined with Key-hole technique for the treatment of mixed cervical spondylosis can effectively remove the compression on the cervical spine without causing cervical instability.


Subject(s)
Laminoplasty , Spondylosis , Male , Female , Humans , Middle Aged , Aged , Retrospective Studies , Laminoplasty/methods , Treatment Outcome , Cervical Vertebrae/surgery , Laminectomy , Spondylosis/surgery , Blood Loss, Surgical
13.
Dev Cell ; 58(23): 2718-2731.e7, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37708895

ABSTRACT

Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Aging , Reproduction , Caenorhabditis elegans Proteins/metabolism , Longevity , Guanosine Triphosphate/metabolism , Mitochondrial Dynamics
15.
Mol Neurodegener ; 18(1): 56, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37580742

ABSTRACT

BACKGROUND: Age is the strongest risk factor for the development of Alzheimer's disease (AD). Besides the pathological hallmarks of ß-amyloid (Aß) plaques and neurofibrillary tangles, emerging evidence demonstrates a critical role of microglia and neuroinflammation in AD pathogenesis. Oleoylethanolamide (OEA) is an endogenous lipid amide that has been shown to promote lifespan and healthspan in C. elegans through regulation of lysosome-to-nucleus signaling and cellular metabolism. The goal of our study was to determine the role of OEA in the mediation of microglial activity and AD pathology using its stable analog, KDS-5104. METHODS: We used primary microglial cultures and genetic and pharmacological approaches to examine the signaling mechanisms and functional roles of OEA in mediating Aß phagocytosis and clearance, lipid metabolism and inflammasome formation. Further, we tested the effect of OEA in vivo in acute LPS-induced neuroinflammation and by chronic treatment of 5xFAD mice. RESULTS: We found that OEA activates PPARα signaling and its downstream cell-surface receptor CD36 activity. In addition, OEA promotes TFEB lysosomal function in a PPARα-dependent but mTORC1-independent manner, the combination of which leads to enhanced microglial Aß uptake and clearance. These are associated with the suppression of LPS-induced lipid droplet accumulation and inflammasome activation. Chronic treatment of 5xFAD mice with KDS-5104 restored dysregulated lipid profiles, reduced reactive gliosis and Aß pathology and rescued cognitive impairments. CONCLUSION: Together, our study provides support that augmenting OEA-mediated lipid signaling may offer therapeutic benefit against aging and AD through modulating lipid metabolism and microglia phagocytosis and clearance.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Caenorhabditis elegans/metabolism , Disease Models, Animal , Inflammasomes/metabolism , Lipopolysaccharides , Mice, Transgenic , Microglia/metabolism , Neuroinflammatory Diseases , PPAR alpha/metabolism
16.
Eye Contact Lens ; 49(9): e357-e363, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37418306

ABSTRACT

OBJECTIVE: To evaluate the effects of scleral lens size and the duration of wear on intraocular pressure (IOP) during lens wear. METHODS: Healthy adults were recruited for this prospective and randomized study. Intraocular pressure measurements were performed using a pneumotonometer. A block randomization was used to assign the order of scleral lens diameter of either 15.6 mm or 18.0 mm for 5-hr bilateral wear over a course of two visits. Scleral IOP (sIOP) was measured during the predetermined intervals, 1.25 hr apart, during the 5-hr scleral lens wear. Corneal IOP (cIOP) was measured before and after the scleral lens wear. The primary outcome measure was the mean change in sIOP from prelens insertion baseline. RESULTS: Corneal IOP unchanged after scleral lens removal compared with the baseline measurements ( P =0.878). Smaller and larger lenses introduced significantly higher sIOP at 2.5 hr after lens insertion with the mean (95% CI) increase of 1.16 (0.54, 1.78) mm Hg and 1.37 (0.76, 1.99) mm Hg, respectively. There was no difference in IOP change between the smaller and larger diameter lenses ( P =0.590). CONCLUSIONS: Well-fitted scleral lenses do not result in clinically significant changes in intraocular pressure during 5-hr lens wear in young and healthy individuals.


Subject(s)
Contact Lenses , Eye Diseases , Adult , Humans , Intraocular Pressure , Prospective Studies , Tonometry, Ocular , Cornea , Sclera
17.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37503234

ABSTRACT

Reduction oxidation (redox) reactions are central in life and altered redox state is associated with a spectrum of human diseases. Glutathione (GSH) is the most abundant antioxidant in eukaryotic cells and plays critical roles in maintaining redox homeostasis. Thus, measuring intracellular GSH level is an important method to assess the redox state of organism. The currently available GSH probes are based on irreversible chemical reactions with glutathione and can't monitor the real-time glutathione dynamics. Our group developed the first reversible reaction based fluorescent probe for glutathione, which can measure glutathione levels at high resolution using a confocal microscope and in the bulk scale with a flow cytometry. Most importantly it can quantitatively monitor the real-time GSH dynamics in living cells. Using the 2 nd generation of GSH probe, RealThiol (RT), this study measured the GSH level in living Hela cells after treatment with varying concentrations of DL-Buthionine sulfoximine (BSO) which inhibits GSH synthesis, using a high throughput imaging system, Cytation™ 5 cell imaging reader. The results revealed that GSH probe RT at the concentration of 2.0 µM accurately monitored the BSO treatment effect on GSH level in the Hela cells. The present results demonstrated that the GSH probe RT is sensitive and precise in GSH measurement in living cells at a high throughput imaging platform and has the potential to be applied to any cell lines.

18.
Hepatol Commun ; 7(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37459199

ABSTRACT

BACKGROUND AND AIMS: HBV RNA in peripheral blood reflects HBV cccDNA transcriptional activity and may predict clinical outcomes. The prospective Melbourne HBV-STOP trial studied nucleot(s)ide analog discontinuation in HBeAg-negative non-cirrhotic participants with long-term virological suppression. Ninety-six weeks after stopping treatment, the proportion of participants with virological relapse (HBV DNA > 2000 IU/mL), biochemical relapse (ALT > 2 × ULN and HBV DNA > 2000 IU/mL), or hepatitis flare (ALT > 5 × ULN and HBV DNA > 2000 IU/mL) was 89%, 58%, and 38%, respectively. We evaluated the ability of serum HBV RNA levels to predict these outcomes. APPROACH RESULTS: HBV RNA levels were measured using the Roche cobas 6800/8800 HBV RNA Investigational Assay. Sixty-five participants had baseline and longitudinal off-treatment specimens available for RNA testing. HBV RNA was detectable at baseline in 25% of participants and was associated with a higher risk of biochemical relapse (81% vs. 51%, p value 0.04) and hepatitis flare (63% vs. 31%, p value 0.04). Participants who had undetectable serum HBV RNA as well as HBsAg ≤ 100 IU/mL at baseline were less likely to experience virological relapse (4 of 9, 44%) than participants with detectable HBV RNA and HBsAg level > 100 IU/mL (15/15, 100%; p value 0.0009). Off-treatment levels of HBV RNA were correlated with HBV DNA and were associated with the risk of hepatitis flare. CONCLUSIONS: Serum HBV RNA may be a useful biomarker for guiding clinical decision-making before stopping nucleot(s)ide analog therapy. Baseline HBV RNA and HBsAg levels are associated with the risk of clinical relapse, hepatitis flare, and disease remission off-treatment.


Subject(s)
Hepatitis B, Chronic , Nucleosides , Humans , Antiviral Agents/therapeutic use , DNA, Viral , Hepatitis B e Antigens , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Nucleosides/therapeutic use , Prospective Studies , RNA , Symptom Flare Up
20.
Nat Commun ; 14(1): 3437, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301861

ABSTRACT

Recent works in metamaterials and transformation optics have demonstrated exotic properties in a number of open systems, including perfect absorption/transmission, electromagnetically induced transparency, cloaking or invisibility, etc. Meanwhile, non-Hermitian physics framework has been developed to describe the properties of open systems, however, most works related to this focus on the eigenstate properties with less attention paid to the reflection characteristics in complex frequency plane, despite the usefulness of zero-reflection (ZR) for applications. Here we demonstrate that the indirectly coupled two-magnon system not only exhibits non-Hermitian eigenmode hybridization, but also ZR states in complex frequency plane. The observed perfect-ZR (PZR) state, i.e., ZR with pure real frequency, is manifested as infinitely narrow reflection dips (~67 dB) with infinite group delay discontinuity. This reflection singularity of PZR distinguishes from the resonant eigenstates but can be adjusted on or off resonance with the eigenstates. Accordingly, the absorption and transmission can be flexibly tuned from nearly full absorption (NFA) to nearly full transmission (NFT) regions.


Subject(s)
Hybridization, Genetic , Physics , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...