Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Comput Biol Med ; 178: 108730, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917535

ABSTRACT

BACKGROUND: A promising approach to cuff-less, continuous blood pressure monitoring is to estimate blood pressure (BP) from Pulse Wave Velocity (PWV). However, most existing PWV-based methods rely on empirical BP-PWV relations and have large prediction errors, which may be caused by the implicit assumption of thin-walled, linear elastic arteries undergoing small deformations. Our objective is to understand the BP-PWV relationship in the absence of such limiting assumptions. METHOD: We performed Fluid-Structure Interaction (FSI) simulations of the radial artery and the common carotid artery under physiological flow conditions. In these dynamic simulations, we employed two constitutive models for the arterial wall: the linear elastic model, implying a thin-walled linear elastic artery undergoing small deformations, and the Holzapfel-Gasser-Ogden (HGO) model, accounting for the nonlinear effects of collagen fibers and their orientations on the large arterial deformation. RESULTS: Despite the changing BP, the linear elastic model predicts a constant PWV throughout a cardiac cycle, which is not physiological. The HGO model correctly predicts a positive BP-PWV correlation by capturing the nonlinear deformation of the artery, showing up to 50 % variations of PWV in a cardiac cycle. CONCLUSION: Dynamic FSI simulations reveal that the BP-PWV relationship strongly depends on the arterial constitutive model, especially in the radial artery. To infer BP from PWV, one must account for the varying PWV, a consequence of the nonlinear arterial response due to collagen fibers. Future efforts should be directed towards robust measurement of time-varying PWV if it is to be used to predict BP.

2.
PeerJ ; 12: e17395, 2024.
Article in English | MEDLINE | ID: mdl-38784392

ABSTRACT

Objective: We compared the effects of early and delayed rehabilitation on the function of patients after rotator cuff repair by meta-analysis to find effective interventions to promote the recovery of shoulder function. Methods: This meta-analysis was registered in PROSPERO (CRD42023466122). We manually searched the randomized controlled trials (RCTs) in the Cochrane Library, Pubmed, Cochrane Library, EMBASE, the China National Knowledge Infrastructure (CNKI), the China VIP Database (VIP), and the Wanfang Database to evaluate the effect of early and delayed rehabilitation after arthroscopic shoulder cuff surgery on the recovery of shoulder joint function. Review Manager 5.3 software was used to analyze the extracted data. Then, the PEDro scale was employed to appraise the methodological quality of the included research. Results: This research comprised nine RCTs and 830 patients with rotator cuff injuries. According to the findings of the meta-analysis, there was no discernible difference between the early rehabilitation group and the delayed rehabilitation group at six and twelve months after the surgery in terms of the VAS score, SST score, follow-up rotator cuff healing rate, and the rotator cuff retear rate at the final follow-up. There was no difference in the ASES score between the early and delayed rehabilitation groups six months after the operation. However, although the ASES score in the early rehabilitation group differed significantly from that in the delayed rehabilitation group twelve months after the operation, according to the analysis of the minimal clinically important difference (MCID), the results have no clinical significance. Conclusions: The improvement in shoulder function following arthroscopic rotator cuff surgery does not differ clinically between early and delayed rehabilitation. When implementing rehabilitation following rotator cuff repair, it is essential to consider the paradoxes surrounding shoulder range of motion and tendon anatomic healing. A program that allows for flexible progression based on the patient's ability to meet predetermined clinical goals or criteria may be a better option.


Subject(s)
Arthroscopy , Recovery of Function , Rotator Cuff Injuries , Humans , Arthroscopy/rehabilitation , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/rehabilitation , Rotator Cuff/surgery , Range of Motion, Articular , Time Factors , Randomized Controlled Trials as Topic , Treatment Outcome
3.
World J Gastrointest Surg ; 16(3): 751-758, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577083

ABSTRACT

BACKGROUND: Cirrhosis is a common liver disease, and ascites is one of the common clinical conditions. However, the clinical manifestations of ascites combined with hyponatremia as a high-risk condition and its relationship to patient prognosis have not been fully studied. AIM: To explore the clinical manifestations, prognostic factors, and relationships of ascites with hyponatremia in patients with cirrhosis to provide better diagnostic and treatment strategies. METHODS: In this study, we retrospectively analyzed the clinical data of 150 patients diagnosed with cirrhosis and ascites between 2017 and 2022. Patients were divided into two groups: ascites combined with hyponatremia group and ascites group. We compared the general characteristics, degree of hyponatremia, complications, treatment, and prognosis between the two groups. RESULTS: In the study results, patients in the ascites combined with hyponatremia group showed an older average age (58.2 ± 8.9 years), 64.4% were male, and had a significantly longer hospitalization time (12.7 ± 5.3 d). Hyponatremia was more severe in this group, with a mean serum sodium concentration of 128.5 ± 4.3 mmol/L, which was significantly different from the ascites group of 137.6 ± 2.1 mmol/L. Patients with ascites and hyponatremia were more likely to develop hepatic encephalopathy (56.2% vs 39.0%), renal impairment (45.2% vs 28.6%) and infection (37.0% vs 23.4%). Regarding treatment, this group more frequently used diuretics (80.8% vs 62.3%) and salt supplements (60.3% vs 38.9%). Multiple logistic regression analysis identified older age [Odds ratio (OR) = 1.06, P = 0.025] and male gender (OR = 1.72, P = 0.020) as risk factors for hyponatremia combined with ascites. Overall, patients with ascites and hyponatremia present a clear high-risk status, accompanied by severe complications and poor prognosis. CONCLUSION: In patients with cirrhosis, ascites with hyponatremia is a high-risk condition that is often associated with severe complications.

4.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602592

ABSTRACT

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Subject(s)
Nitrates , Setaria Plant , Reactive Oxygen Species , Nitrates/pharmacology , Setaria Plant/genetics , Hydrogen Peroxide , Sodium Chloride , Oxygen , Signal Transduction , Gene Expression Profiling , Nitrogen
5.
Chemistry ; 30(34): e202400714, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38622057

ABSTRACT

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

6.
Front Pharmacol ; 15: 1344983, 2024.
Article in English | MEDLINE | ID: mdl-38455959

ABSTRACT

The pericarp of Herpetospermum pedunculosum (HPP) has traditionally been used for treating jaundice and hepatitis. However, the specific hepatoprotective components and their safety/efficacy profiles remain unclear. This study aimed to characterize the total cucurbitacins (TCs) extracted from HPP and evaluate their hepatoprotective potential. As a reference, Hu-lu-su-pian (HLSP), a known hepatoprotective drug containing cucurbitacins, was used for comparison of chemical composition, effects, and safety. Molecular networking based on UHPLC-MS/MS identified cucurbitacin B, isocucurbitacin B, and cucurbitacin E as the major components in TCs, comprising 70.3%, 26.1%, and 3.6% as determined by RP-HPLC, respectively. TCs treatment significantly reversed CCl4-induced metabolic changes associated with liver damage in a dose-dependent manner, impacting pathways including energy metabolism, oxidative stress and phenylalanine metabolism, and showed superior efficacy to HLSP. Safety evaluation also showed that TCs were safe, with higher LD50 and no observable adverse effect level (NOAEL) values than HLSP. The median lethal dose (LD50) and NOAEL values of TCs were 36.21 and 15 mg/kg body weight (BW), respectively, while the LD50 of HLSP was 14 mg/kg BW. In summary, TCs extracted from HPP demonstrated promising potential as a natural hepatoprotective agent, warranting further investigation into synergistic effects of individual cucurbitacin components.

7.
J Surg Case Rep ; 2024(3): rjae125, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524677

ABSTRACT

We identified a young female patient admitted for suspected renal malignancy. Partial nephrectomy was performed after imaging evaluation and discussion. Postoperative biopsy pathology reported multiple low-grade eosinophilic renal tumors (LOTs) with angiomyolipoma growth. After reviewing the data, we found that LOT was mostly solitary and occurred in middle-aged and elderly patients. This case is unique and we share it to improve the understanding of this disease.

8.
Nano Lett ; 24(11): 3448-3455, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452056

ABSTRACT

Unlike graphene derived from graphite, borophenes represent a distinct class of synthetic two-dimensional materials devoid of analogous bulk-layered allotropes, leading to covalent bonding within borophenes instead of van der Waals (vdW) stacking. Our investigation focuses on 665 vdW-stacking boron bilayers to uncover potential bulk-layered boron allotropes through vdW stacking. Systematic high-throughput screening and stability analysis reveal a prevailing inclination toward covalently bonded layers in the majority of boron bilayers. However, an intriguing outlier emerges in δ5 borophene, demonstrating potential as a vdW-stacking candidate. We delve into electronic and topological structural similarities between δ5 borophene and graphene, shedding light on the structural integrity and stability of vdW-stacked boron structures across bilayers, multilayers, and bulk-layered allotropes. The δ5 borophene analogues exhibit metallic properties and characteristics of phonon-mediated superconductors, boasting a critical temperature near 22 K. This study paves the way for the concept of "borophite", a long-awaited boron analogue of graphite.

9.
Curr Biol ; 34(6): 1295-1308.e5, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38452759

ABSTRACT

Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.


Subject(s)
Chromatids , Lysine , Separase/metabolism , Securin/genetics , Securin/metabolism , Chromatids/metabolism , Acetylation , Lysine/genetics , Lysine/metabolism , Cell Cycle Proteins/metabolism , Anaphase , Endopeptidases , Chromosome Segregation
10.
Adv Mater ; 36(23): e2312618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38439598

ABSTRACT

Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2-Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2-Ni. The dz2 + dx2-y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6-Oh field with CoSe6-Oh/CoSe4-Td. This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.

11.
J Orthop Surg Res ; 19(1): 152, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395963

ABSTRACT

BACKGROUND: This study aimed to determine the incidence and influencing factors of venous thromboembolism (VTE) in patients with traumatic rib fractures. METHODS: The retrospective study analyzed medical records of patients with traumatic rib fractures from 33 hospitals. RESULTS: The overall incidence of VTE in hospitalized patients with traumatic rib fractures was 8.1%. Patients with isolated traumatic rib fractures had a significantly lower incidence of VTE (4.4%) compared to patients with rib fractures combined with other injuries (12.0%). Multivariate analysis identified the number of rib fractures as an independent risk factor for thrombosis. Surgical stabilization of isolated rib fractures involving three or more ribs was associated with a lower VTE incidence compared to conservative treatment. CONCLUSIONS: Patients with rib fractures have a higher incidence of VTE, positively correlated with the number of rib fractures. However, the occurrence of thrombosis is relatively low in isolated rib fractures. Targeted thromboprophylaxis strategies should be implemented for these patients, and surgical stabilization of rib fractures may be beneficial in reducing the risk of VTE.


Subject(s)
Rib Fractures , Thrombosis , Venous Thromboembolism , Humans , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Rib Fractures/complications , Rib Fractures/epidemiology , Anticoagulants/therapeutic use , Incidence , Retrospective Studies , Risk Factors , Ribs
12.
J Agric Food Chem ; 72(8): 4089-4099, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38353561

ABSTRACT

Ten new cadinane-type sesquiterpenoids, named hibisceusins I-R (1-10), along with 14 known sesquiterpenoids (11-24), were acquired from the tainted stems of Hibiscus tiliaceus. Their structures were identified via spectroscopic analysis, one-dimensional (1D) and two-dimensional (2D) NMR, and computer-assisted structure elucidation techniques, including infrared (IR) and mass spectrometry (MS) data. Additionally, subsequent DP4/DP4+ probability methods were used to resolve 3's relative configurations by comparing their experimental values to the predicted NMR data. The absolute configurations of compounds 1-4 were measured through electronic circular dichroism (ECD) spectra. The ability of all isolates to inhibit the growth of five phytopathogenic fungi (Rhizopus stolonifer, Verticillium dahliae Kleb., Thanatephorus cucumeris, Fusarium oxysporum Schltdl., and F. oxysporum HK-27) was evaluated. Aldehydated sesquiterpenoids (1, 6-9, 11, 12, and 22) and a known sesquiterpenoid quinine (18) exhibited significant inhibitory activities against V. dahliae, T. cucumeris, F. oxysporum, and F. oxysporum HK-27 with minimum inhibitory concentration (MIC) values of 2.5-50 µg/mL, but all isolates remained inactive against R. stolonifer. Moreover, the effects of the isolates on the mycelial morphology were watched through scanning electron microscopy. This study revealed that aldehydated cadinane-type sesquiterpenoids could be used as novel antifungal molecules to develop agrochemical fungicides in plant protection.


Subject(s)
Fungicides, Industrial , Hibiscus , Polycyclic Sesquiterpenes , Quaternary Ammonium Compounds , Sesquiterpenes , Fungicides, Industrial/pharmacology , Hibiscus/chemistry , Molecular Structure , Sesquiterpenes/chemistry
13.
Front Bioeng Biotechnol ; 12: 1343329, 2024.
Article in English | MEDLINE | ID: mdl-38405377

ABSTRACT

Introduction: Dental erosion and abrasion pose significant clinical challenges, often leading to exposed dentinal tubules and dentine demineralization. The aim of this study was to analyse the efficacy of quercetin-encapsulated hollow mesoporous silica nanocomposites (Q@HMSNs) on the prevention of dentine erosion and abrasion. Method: Q@HMSNs were synthesized, characterized, and evaluated for their biocompatibility. A total of 130 dentine specimens (2 mm × 2 mm × 2 mm) were prepared and randomly distributed into 5 treatment groups (n = 26): DW (deionized water, negative control), NaF (12.3 mg/mL sodium fluoride, positive control), Q (300 µg/mL quercetin), HMSN (5.0 mg/mL HMSNs), and Q@HMSN (5.0 mg/mL Q@HMSNs). All groups were submitted to in vitro erosive (4 cycles/d) and abrasive (2 cycles/d) challenges for 7 days. The specimens in the DW, NaF, and Q groups were immersed in the respective solutions for 2 min, while treatment was performed for 30 s in the HMSN and Q@HMSN groups. Subsequently, the specimens were subjected to additional daily erosion/abrasion cycles for another 7 days. The effects of the materials on dentinal tubule occlusion and demineralized organic matrix (DOM) preservation were examined by scanning electron microscopy (SEM). The penetration depth of rhodamine B fluorescein into the etched dentine was assessed using confocal laser scanning microscopy (CLSM). The erosive dentine loss (EDL) and release of type I collagen telopeptide (ICTP) were measured. The data were analysed by one-way analysis of variance (ANOVA) with post hoc Tukey's test (α = 0.05). Results: Q@HMSNs were successfully synthesized and showed minimal toxicity to human dental pulp stem cells (HDPSCs) and gingival fibroblasts (HGFs). Q@HMSNs effectively occluded the dentinal tubules, resulting in a thicker DOM in the Q@HMSN group. The CLSM images showed more superficial penetration in the HMSN and Q@HMSN groups than in the quercetin, NaF, and DW groups. The Q@HMSN group exhibited a significantly lower EDL and reduced ICTP levels compared to the other groups (p < 0.05). Conclusion: Q@HMSNs hold promise for inhibiting dentine erosion and abrasion by promoting tubule occlusion and DOM preservation.

14.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38352270

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

15.
Nat Struct Mol Biol ; 31(2): 293-299, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177666

ABSTRACT

Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.


Subject(s)
Bacterial Proteins , Nitroso Compounds , Thiazolidines , Thiocyanates , Trans-Activators , Trans-Activators/genetics , Transcriptional Activation , Cryoelectron Microscopy , Base Sequence , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , Gene Expression Regulation, Bacterial
16.
Lupus ; 33(2): 155-165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182135

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a complex autoimmune connective tissue disease (CTD) that is an important cause of devastating pulmonary arterial hypertension (PAH), and persistent progression of PAH can lead to right heart failure, predicting a poor prognosis for SLE patients. Right ventricular-pulmonary arterial (RV-PA) coupling with echocardiography has been demonstrated to be a noninvasive alternative method for evaluating PAH patients' predictive outcomes. Whether the ratio of right ventricular stroke volume (RVSV) to right ventricular end-systolic volume (RVESV) measured by three-dimensional echocardiography (3DE) is a new index of RV-PA coupling has not been discussed as a new predictor for the clinical outcome of systemic lupus erythematosus-associated pulmonary arterial hypertension (SLE-PAH). METHODS: From June 2019 to February 2023, 46 consecutive patients with SLE-PAH were enrolled prospectively, and their clinical data and echocardiographs were studied and analyzed. The control group consisted of 30 healthy subjects matched for age, sex, and body surface area (BSA). The main endpoints of this study were a composite of all-cause mortality and adverse clinical events. Baseline clinical characteristics and echocardiographic assessments were analyzed. RESULTS: During a median of 24 months (IQR 18-31), 16 of 46 SLE-PAH patients (34.7%) experienced endpoint-related events. At baseline, patients who experienced mortality or adverse events had a worse WHO functional class (WHO FC) and lower anti-double-stranded DNA (dsDNA) antibody levels. The right ventricular (RV) systolic dysfunction in SLE-PAH subjects was significantly worse than that in the healthy control group, especially in SLE-PAH patients in the endpoint event group. Compared to controls, patients with SLE-PAH had a lower RVSV/RVESV ratio. In the group comparison, patients who had experienced an endpoint event had a sequentially worse ratio (1.86 (1.65-2.3) versus 1.30 (1.09-1.46) versus 0.64 (0.59-0.67), p < .001). There were statistically significant associations between the RVSV/RVESV ratio to routine RV systolic function and clinical parameters. The RVSV/RVESV ratio was negatively correlated with the WHO FC (r = -0.621, p < .001) and positively correlated with the anti-dsDNA level. The ROC curve showed that the optimal cutoff for RVSV/RVESV < 0.712 determined a higher risk of poor prognosis. Kaplan‒Meier survival curves showed that an RVSV/RVESV ratio >0.712 was associated with more favorable long-term outcomes. CONCLUSIONS: The 3DE-derived SV/ESV ratio as a noninvasive alternative surrogate of RV-PA coupling was an eximious indicator for identifying endpoint events in SLE-PAH patients and can provide a diagnostic basis for clinical intervention.


Subject(s)
Echocardiography, Three-Dimensional , Hypertension, Pulmonary , Lupus Erythematosus, Systemic , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Humans , Hypertension, Pulmonary/etiology , Lupus Erythematosus, Systemic/complications , Echocardiography, Three-Dimensional/methods , Echocardiography , Ventricular Dysfunction, Right/etiology
17.
Signal Transduct Target Ther ; 9(1): 12, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38185705

ABSTRACT

Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-ß, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-ß, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.


Subject(s)
Reperfusion Injury , Animals , Reperfusion Injury/genetics , Reperfusion , Wnt Signaling Pathway/genetics , Apoptosis/genetics , Ischemia
18.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38230456

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Protein Isoforms/genetics , Alternative Splicing , RNA/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
19.
EBioMedicine ; 99: 104894, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086156

ABSTRACT

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Male , Infant , Humans , Muscle, Skeletal/pathology , Genetic Therapy/adverse effects , Genetic Therapy/methods , Muscle Weakness , Muscle Strength , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Myopathies, Structural, Congenital/pathology
20.
Adv Mater ; 36(2): e2306138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37920965

ABSTRACT

Designing bifunctional low-cost photo-assisted electrocatalysts for converting solar and electric energy into hydrogen energy remains a huge challenge. Herein, a heterojunction (Fe cluster modified Co9 S8 loaded on carbon nanotubes, Co9 S8 -Fe@CNT) for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is demonstrated. Benefiting from the good electronic conductivity and spatial confinement of the carbon skeleton, as well as the electronic structure regulation of the Fe cluster, Co9 S8 -Fe@CNT exhibits excellent catalytic performance with a low overpotential of 150 mV for OER and 135 mV for HER at 10 mA cm-2 . Upon light irradiation, holes and electrons are generated in the valence band and conduction band of the Co9 S8 , respectively. Part of the charges are transferred to the interface to facilitate the catalytic reaction, while the remaining are transferred by the electrode. When working as a bifunctional catalyst for overall water splitting, the performance can reach 1.33 V at under light conditions, which is significantly better than 1.52 V in a dark environment. Theoretical calculations revealed lowered Gibbs free energy (∆GH *) of the heterojunction with the effect of Fe modification of Co9 S8 . This work sheds a new light in designing novel photoelectrochemical materials to convert solar and electric energy into chemical energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...