Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 338: 127799, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-32798816

ABSTRACT

An emerging blanching technology, namely vacuum-steam pulsed blanching (VSPB) was employed to blanch the carrots and its effects on blanching efficiency, microstructure and ultrastructure, drying kinetics, colour, texture, phytochemicals (phenolics and ß-carotene) and antioxidant capacity of carrot slices were explored and compared with the traditional hot water blanching. Results showed that both blanching treatments enhanced the drying velocity and shortened the drying time by 25.9% compared with untreated samples. VSPB yielded higher blanching efficiency, better colour (more red and yellow), greater antioxidant capacity and higher preservation of phytochemicals compared with hot water blanched samples. Especially, compared to hot water blanched carrots, the p-hydroxybenzoic acid, ferulic acid, and caffeic acid content of VSPB samples increased of 106.6%, 42.0%, and 19.0%, respectively. Interestingly, the chlorogenic acid content in the blanched carrot increased more than 220 times compared to fresh samples. Ultrastructure and microstructure observation clarify the mechanism of quality enhancement of VSPB.


Subject(s)
Antioxidants/chemistry , Daucus carota/chemistry , Daucus carota/ultrastructure , Desiccation/methods , Food-Processing Industry/methods , Phytochemicals/analysis , Antioxidants/analysis , Color , Coumaric Acids/analysis , Food Quality , Hardness , Kinetics , Microscopy, Electron, Transmission , Phenols/analysis , Phytochemicals/chemistry , Steam , Temperature , Vacuum , Water/chemistry , beta Carotene/analysis
2.
Carbohydr Polym ; 222: 114980, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31320051

ABSTRACT

Effects of ripeness (four stages from the lowest to highest degree-I, II, III, and IV) on the physicochemical properties, pectin contents and nanostructure, and drying kinetics of apricots were investigated. The color values (L*, a*, and b*) and total soluble solid content increased during ripening, while the titratable acidity content and hardness decreased. The water-soluble pectin content increased as ripening progressed, but the chelate- and sodium carbonate-soluble pectin contents gradually declined. Atomic force microscopy imaging indicated that the pectin depolymerization occurred during ripening. Fruits at stage III obtained the highest drying rate, and the drying time was reduced by 27.27%, 17.24%, and 7.69% compared to those of stage I, II and IV, respectively. Results showed that the ripeness had significant influence on the drying kinetics, which is related to the modification of physicochemical and pectic properties. The ripeness classification is an essential operation for achieving effective drying process.

SELECTION OF CITATIONS
SEARCH DETAIL