Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Imeta ; 3(3): e196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898984

ABSTRACT

Akkermansia muciniphila pretreatment mitigated Listeria monocytogenes infection in mice. A. muciniphila improved gut microbiota disturbed by L. monocytogenes infection and significantly increased the level of intestinal linoleic acid in mice. Linoleic acid strengthened the intestinal epithelial barrier and reduced pathogen translocation partly by regulating NF-κB/MLCK pathway in a GPR40-dependent manner.

2.
Microbiol Resour Announc ; 13(7): e0037524, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38860804

ABSTRACT

Paired-end short reads of Illumina HiSeq, MiSeq, and NovaSeq of simulated bacterial communities from fresh spinach and surface water were generated in silico at various sequencing depths. Multidrug-resistant Salmonella enterica serotype Indiana was included in the spinach community, while the water community contained multidrug-resistant Pseudomonas aeruginosa.

3.
mBio ; 15(7): e0077724, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38920393

ABSTRACT

This study examined the diversity and persistence of Salmonella in the surface waters of agricultural regions of Brazil, Chile, and Mexico. Research groups (three in 2019-2020 and five in 2021-2022) conducted a long-term survey of surface water across 5-8 months annually (n = 30 monthly). On-site, each team filtered 10-L water samples with modified Moore Swabs to capture Salmonella, which were then isolated and identified using conventional microbiological techniques. Salmonella isolates were sequenced on Illumina platforms. Salmonella was present in 1,493/3,291 water samples (45.8%), with varying isolation rates across countries and years. Newport, Infantis, and Typhimurium were the most frequent among the 128 different serovars. Notably, 22 serovars were found in all three countries, representing almost half of the 1,911 different isolates collected. The resistome comprised 72 antimicrobial resistance (AMR) genes and six point mutations in three genes. At least one AMR determinant was observed in 33.8% (646/1,911) of the isolates, of which 47.4% (306/646) were potentially multidrug resistant. Phylogeny based on core genome multilocus sequence typing (cgMLST) showed that most isolates clustered according to sequence type and country of origin. Only 14 cgMLST multi-country clusters were detected among the 275 clusters. However, further analysis confirmed that close genetic relatedness occurred mostly among isolates from the same country, with three exceptions. Interestingly, isolates closely related phylogenetically were recovered over multiple years within the same country, indicating the persistence of certain Salmonella in those areas. In conclusion, surface waters in these regions are consistently contaminated with diverse Salmonella, including strains that persist over time.IMPORTANCESalmonella is a leading foodborne pathogen responsible for millions of illnesses, hospitalizations, and deaths annually. Although Salmonella-contaminated water has now been recognized as an important contamination source in the agrifood chain, there is a lack of knowledge on the global occurrence and diversity of Salmonella in surface water. Moreover, there has been insufficient research on Salmonella in surface waters from Latin American countries that are major producers and exporters of agricultural products. Incorporating genetic profiling of Salmonella isolates from underrepresented regions, such as Latin America, enhances our understanding of the pathogen's ecology, evolution, antimicrobial resistance, and pathogenicity. Moreover, leveraging genomic data derived from pathogens isolated from diverse geographical areas is critical for assessing the potential public health risk posed by the pathogen and expediting investigations of foodborne outbreaks. Ultimately, global efforts contribute significantly to reducing the incidence of foodborne infections.


Subject(s)
Salmonella , Water Microbiology , Brazil/epidemiology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Mexico/epidemiology , Chile/epidemiology , Genetic Variation , Phylogeny , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genomics , Molecular Epidemiology
4.
Microbiol Spectr ; 12(6): e0011724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687063

ABSTRACT

Oxford Nanopore sequencing is one of the high-throughput sequencing technologies that facilitates the reconstruction of metagenome-assembled genomes (MAGs). This study aimed to assess the potential of long-read assembly algorithms in Oxford Nanopore sequencing to enhance the MAG-based identification of bacterial pathogens using both simulated and mock communities. Simulated communities were generated to mimic those on fresh spinach and in surface water. Long reads were produced using R9.4.1+SQK-LSK109 and R10.4 + SQK-LSK112, with 0.5, 1, and 2 million reads. The simulated bacterial communities included multidrug-resistant Salmonella enterica serotypes Heidelberg, Montevideo, and Typhimurium in the fresh spinach community individually or in combination, as well as multidrug-resistant Pseudomonas aeruginosa in the surface water community. Real data sets of the ZymoBIOMICS HMW DNA Standard were also studied. A bioinformatic pipeline (MAGenie, freely available at https://github.com/jackchen129/MAGenie) that combines metagenome assembly, taxonomic classification, and sequence extraction was developed to reconstruct draft MAGs from metagenome assemblies. Five assemblers were evaluated based on a series of genomic analyses. Overall, Flye outperformed the other assemblers, followed by Shasta, Raven, and Unicycler, while Canu performed least effectively. In some instances, the extracted sequences resulted in draft MAGs and provided the locations and structures of antimicrobial resistance genes and mobile genetic elements. Our study showcases the viability of utilizing the extracted sequences for precise phylogenetic inference, as demonstrated by the consistent alignment of phylogenetic topology between the reference genome and the extracted sequences. R9.4.1+SQK-LSK109 was more effective in most cases than R10.4+SQK-LSK112, and greater sequencing depths generally led to more accurate results.IMPORTANCEBy examining diverse bacterial communities, particularly those housing multiple Salmonella enterica serotypes, this study holds significance in uncovering the potential of long-read assembly algorithms to improve metagenome-assembled genome (MAG)-based pathogen identification through Oxford Nanopore sequencing. Our research demonstrates that long-read assembly stands out as a promising avenue for boosting precision in MAG-based pathogen identification, thus advancing the development of more robust surveillance measures. The findings also support ongoing endeavors to fine-tune a bioinformatic pipeline for accurate pathogen identification within complex metagenomic samples.


Subject(s)
Algorithms , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Metagenome , Nanopore Sequencing , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Computational Biology/methods , Salmonella enterica/genetics , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Metagenomics/methods , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/classification
5.
Lancet Reg Health Am ; 32: 100711, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495315

ABSTRACT

Background: Multidrug-resistant (MDR) Salmonella Infantis has disseminated worldwide, mainly linked to the consumption of poultry products. Evidence shows dissemination of this pathogen in Chile; however, studies are primarily limited to phenotypic data or involve few isolates. As human cases of Salmonella Infantis infections have substantially increased in recent years, this study aimed to characterise the genomic epidemiology and antimicrobial-resistance profiles of isolates obtained from different sources, aiming to inform effective surveillance and control measures. Methods: We sequenced 396 Salmonella Infantis genomes and analysed them with all publicly available genomes of this pathogen from Chile (440 genomes in total), representing isolates from environmental, food, animal, and human sources obtained from 2009 to 2022. Based on bioinformatic and phenotypic methods, we assessed the population structure, dissemination among different niches, and antimicrobial resistance (AMR) profiles of Salmonella Infantis in the country. Findings: The genomic and phylogenetic analyses showed that Salmonella Infantis from Chile comprised several clusters of highly related isolates dominated by sequence type 32. The HC20_343 cluster grouped an important proportion of all isolates. This was the only cluster associated with pESI-like megaplasmids, and up to 12 acquired AMR genes/mutations predicted to result in an MDR phenotype. Accordingly, antimicrobial-susceptibility testing revealed a strong concordance between the AMR genetic determinants and their matching phenotypic expression, indicating that a significant proportion of HC20_343 isolates produce extended-spectrum ß-lactamases and have intermediate fluoroquinolone resistance. HC20_343 Salmonella Infantis were spread among environmental, animal, food, and human niches, showing a close relationship between isolates from different years and sources, and a low intra-source genomic diversity. Interpretation: Our findings show a widespread dissemination of MDR Salmonella Infantis from the HC20_343 cluster in Chile. The high proportion of isolates with resistance to first-line antibiotics and the evidence of active transmission between the environment, animals, food, and humans highlight the urgency of improved surveillance and control measures in the country. As HC20_343 isolates predominate in the Americas, our results suggest a high prevalence of ESBL-producing Salmonella Infantis with intermediate fluoroquinolone resistance in the continent. Funding: Partially supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services as part of an award, FDU001818, with 30% percent funded by FDA/HHS; and by Agencia de Investigación y Desarrollo de Chile (ANID) through FONDECYT de Postdoctorado Folio 3230796 and Folio 3210317, FONDECYT Regular Folio 1231082, and ANID-Millennium Science Initiative Program-ICN2021_044.

6.
Microbiol Spectr ; 12(5): e0004724, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38546218

ABSTRACT

Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.


Subject(s)
Drug Resistance, Multiple, Bacterial , Phylogeny , Salmonella enterica , Salmonella typhimurium , Serogroup , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/drug effects , Brazil , Drug Resistance, Multiple, Bacterial/genetics , Mexico , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/drug effects , Salmonella typhimurium/classification , Integrons/genetics , Genome, Bacterial , Chile , Genomics , Anti-Bacterial Agents/pharmacology , Latin America , Water Microbiology , Polymorphism, Single Nucleotide , Plasmids/genetics , Microbial Sensitivity Tests
7.
mBio ; 14(1): e0345522, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36645293

ABSTRACT

Phylogeny is a powerful tool that can be incorporated into quantitative descriptions of community diversity, yet its use has been limited largely due to the difficulty in constructing phylogenies which incorporate the wide genomic diversity of microbial communities. Here, we describe the development of a web portal, PhyloPlus, which enables users to generate customized phylogenies that may be applied to any bacterial or archaeal communities. We demonstrate the power of phylogeny by comparing metrics that employ phylogeny with those that do not when applied to data sets from two metagenomic studies (fermented food, n = 58; human microbiome, n = 60). This example shows how inclusion of all bacterial species identified by taxonomic classifiers (Kraken2 and Kaiju) made the phylogeny perfectly congruent to the corresponding classification outputs. Our phylogeny-based approach also enabled the construction of more constrained null models which (i) shed light into community structure and (ii) minimize potential inflation of type I errors. Construction of such null models allowed for the observation of under-dispersion in 44 (75.86%) food samples, with the metacommunity defined as bacteria that were found in different food matrices. We also observed that closely related species with high abundance and uneven distribution across different sites could potentially exaggerate the dissimilarity between phylogenetically similar communities if they were measured using traditional species-based metrics (Padj. = 0.003), whereas this effect was mitigated by incorporating phylogeny (Padj. = 1). In summary, our tool can provide additional insights into microbial communities of interest and facilitate the use of phylogeny-based approaches in metagenomic analyses. IMPORTANCE There has been an explosion of interest in how microbial diversity affects human health, food safety, and environmental functions among many other processes. Accurately measuring the diversity and structure of those communities is central to understanding their effects. Here, we describe the development of a freely available online tool, PhyloPlus, which allows users to generate custom phylogenies that may be applied to any data set, thereby removing a major obstacle to the application of phylogeny to metagenomic data analysis. We demonstrate that the genetic relatedness of the organisms within those communities is a critical feature of their overall diversity, and that using a phylogeny which captures and quantifies this diversity allows for much more accurate descriptions while preventing misleading conclusions based on estimates that ignore evolutionary relationships.


Subject(s)
Metagenome , Microbiota , Humans , Phylogeny , Metagenomics , Microbiota/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
8.
Sci Rep ; 13(1): 1331, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693882

ABSTRACT

Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.


Subject(s)
Salmonella enterica , Salmonella enteritidis , Humans , Anti-Bacterial Agents/pharmacology , Phylogeny , Drug Resistance, Bacterial/genetics , Genomics , Geography , Drug Resistance, Multiple, Bacterial/genetics , Salmonella enterica/genetics , Microbial Sensitivity Tests
9.
Microorganisms ; 10(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36557669

ABSTRACT

Metagenomics offers the highest level of strain discrimination of bacterial pathogens from complex food and water microbiota. With the rapid evolvement of assembly algorithms, defining an optimal assembler based on the performance in the metagenomic identification of foodborne and waterborne pathogens is warranted. We aimed to benchmark short-read assemblers for the metagenomic identification of foodborne and waterborne pathogens using simulated bacterial communities. Bacterial communities on fresh spinach and in surface water were simulated by generating paired-end short reads of Illumina HiSeq, MiSeq, and NovaSeq at different sequencing depths. Multidrug-resistant Salmonella Indiana SI43 and Pseudomonas aeruginosa PAO1 were included in the simulated communities on fresh spinach and in surface water, respectively. ABySS, IDBA-UD, MaSuRCA, MEGAHIT, metaSPAdes, and Ray Meta were benchmarked in terms of assembly quality, identifications of plasmids, virulence genes, Salmonella pathogenicity island, antimicrobial resistance genes, chromosomal point mutations, serotyping, multilocus sequence typing, and whole-genome phylogeny. Overall, MEGHIT, metaSPAdes, and Ray Meta were more effective for metagenomic identification. We did not obtain an optimal assembler when using the extracted reads classified as Salmonella or P. aeruginosa for downstream genomic analyses, but the extracted reads showed consistent phylogenetic topology with the reference genome when they were aligned with Salmonella or P. aeruginosa strains. In most cases, HiSeq, MiSeq, and NovaSeq were comparable at the same sequencing depth, while higher sequencing depths generally led to more accurate results. As assembly algorithms advance and mature, the evaluation of assemblers should be a continuous process.

10.
Front Microbiol ; 13: 802625, 2022.
Article in English | MEDLINE | ID: mdl-35722289

ABSTRACT

The increasing number of studies reporting the presence of Salmonella in environmental water sources suggests that it is beyond incidental findings originated from sparse fecal contamination events. However, there is no consensus on the occurrence of Salmonella as its relative serovar representation across non-recycled water sources. We conducted a meta-analysis of proportions by fitting a random-effects model using the restricted maximum-likelihood estimator to obtain the weighted average proportion and between-study variance associated with the occurrence of Salmonella in water sources. Moreover, meta-regression and non-parametric supervised machine learning method were performed to predict the effect of moderators on the frequency of Salmonella in non-recycled water sources. Three sequential steps (identification of information sources, screening and eligibility) were performed to obtain a preliminary selection from identified abstracts and article titles. Questions related to the frequency of Salmonella in aquatic environments, as well as putative differences in the relative frequencies of the reported Salmonella serovars and the role of potential variable moderators (sample source, country, and sample volume) were formulated according to the population, intervention, comparison, and outcome method (PICO). The results were reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyzes statement (PRISMA). A total of 26 eligible papers reporting 148 different Salmonella serovars were retrieved. According to our model, the Salmonella frequency in non-recycled water sources was 0.19 [CI: 0.14; 0.25]. The source of water was identified as the most import variable affecting the frequency of Salmonella, estimated as 0.31 and 0.17% for surface and groundwater, respectively. There was a higher frequency of Salmonella in countries with lower human development index (HDI). Small volume samples of surface water resulted in lower detectable Salmonella frequencies both in high and low HDI regions. Relative frequencies of the 148 serovars were significantly affected only by HDI and volume. Considering that serovars representation can also be affected by water sample volume, efforts toward the standardization of water samplings for monitoring purposes should be considered. Further approaches such as metagenomics could provide more comprehensive insights about the microbial ecology of fresh water and its importance for the quality and safety of agricultural products.

11.
Environ Pollut ; 306: 119298, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35430308

ABSTRACT

Surface water is one of the primary sources of irrigation water for produce production; therefore, its contamination by foodborne pathogens, such as Salmonella, may substantially impact public health. In this study, we determined the presence of Salmonella in surface water and characterized the relationship between Salmonella detection and environmental and anthropogenic factors. From April 2019 to February 2020, 120 samples from 30 sites were collected monthly in four watersheds located in two different central Chile agricultural regions (N = 1080). Water samples from rivers, canals, streams, and ponds linked to each watershed were obtained. Surface water (10 L) was filtrated in situ, and samples were analyzed for the presence of Salmonella. Salmonella was detected every month in all watersheds, with a mean detection percentage of 28% (0%-90%) across sampling sites, regardless of the season. Overall, similar detection percentages were observed for both regions: 29.1% for Metropolitan and 27.0% for Maule. Salmonella was most often detected in summer (39.8% of all summer samples tested positive) and least often in winter (14.4% of winter samples). Random forest analysis showed that season, water source, and month, followed by latitude and river, were the most influential factors associated with Salmonella detection. The influences of water pH and temperature (categorized as environmental factors) and factors associated with human activity (categorized as anthropogenic factors) registered at the sampling site were weakly or not associated with Salmonella detection. In conclusion, Salmonella was detected in surface water potentially used for irrigation, and its presence was linked to season and water source factors. Interventions are necessary to prevent contamination of produce, such as water treatment before irrigation.


Subject(s)
Anthropogenic Effects , Water Microbiology , Agricultural Irrigation , Agriculture , Humans , Rivers , Salmonella
12.
Foods ; 11(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35327308

ABSTRACT

Listeria monocytogenes is a major foodborne pathogen that can contaminate food products and colonize food-producing facilities. Foodservice operations (FSOp) are frequently responsible for foodborne outbreaks due to food safety practices failures. We investigated the presence of and characterized L. monocytogenes from two FSOp (cafeterias) distributing ready-to-eat meals and verified FSOp's compliance with good manufacturing practices (GMP). Two facilities (FSOp-A and FSOp-B) were visited three times each over 5 months. We sampled foods, ingredients, and surfaces for microbiological analysis, and L. monocytogenes isolates were characterized by phylogenetic analyses and phenotypic characteristics. GMP audits were performed in the first and third visits. A ready-to-eat salad (FSOp-A) and a frozen ingredient (FSOp-B) were contaminated with L. monocytogenes, which was also detected on Zone 3 surfaces (floor, drains, and a boot cover). The phylogenetic analysis demonstrated that FSOp-B had persistent L. monocytogenes strains, but environmental isolates were not closely related to food or ingredient isolates. GMP audits showed that both operations worked under "fair" conditions, and "facilities and equipment" was the section with the least compliances. The presence of L. monocytogenes in the environment and GMP failures could promote food contamination with this pathogen, presenting a risk to consumers.

13.
Food Res Int ; 151: 110817, 2022 01.
Article in English | MEDLINE | ID: mdl-34980422

ABSTRACT

The past few years have seen a significant increase in availability of whole genome sequencing information, allowing for its incorporation in predictive modeling for foodborne pathogens to account for inter- and intra-species differences in their virulence. However, this is hindered by the inability of traditional statistical methods to analyze such large amounts of data compared to the number of observations/isolates. In this study, we have explored the applicability of machine learning (ML) models to predict the disease outcome, while identifying features that exert a significant effect on the prediction. This study was conducted on Salmonella enterica, a major foodborne pathogen with considerable inter- and intra-serovar variation. WGS of isolates obtained from various sources (i.e., human, chicken, and swine) were used as input in four machine learning models (logistic regression with ridge, random forest, support vector machine, and AdaBoost) to classify isolates based on disease severity (extraintestinal vs. gastrointestinal) in the host. The predictive performances of all models were tested with and without Elastic Net regularization to combat dimensionality issues. Elastic Net-regularized logistic regression model showed the best area under the receiver operating characteristic curve (AUC-ROC; 0.86) and outcome prediction accuracy (0.76). Additionally, genes coding for transcriptional regulation, acidic, oxidative, and anaerobic stress response, and antibiotic resistance were found to be significant predictors of disease severity. These genes, which were significantly associated with each outcome, could possibly be input in amended, gene-expression-specific predictive models to estimate virulence pattern-specific effect of Salmonella and other foodborne pathogens on human health.


Subject(s)
Salmonella enterica , Animals , Machine Learning , Phenotype , Salmonella/genetics , Salmonella enterica/genetics , Swine , Whole Genome Sequencing
14.
Pathogens ; 10(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34832547

ABSTRACT

Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.

15.
Appl Environ Microbiol ; 87(23): e0168321, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34586905

ABSTRACT

Enteric pathogens, including Salmonella, are capable of long-term survival after desiccation and resist heat treatments that are lethal to hydrated cells. The mechanisms of dry-heat resistance differ from those of wet-heat resistance. To elucidate the mechanisms of dry-heat resistance in Salmonella, screening of the dry-heat resistance of 108 Salmonella strains, representing 39 serotypes, identified the 22 most resistant and the 8 most sensitive strains for comparative genome analysis. A total of 289 genes of the accessory genome were differently distributed between resistant and sensitive strains. Among these genes, 28 proteins with a putative relationship to stress resistance were selected for to quantify relative gene expression before and after desiccation and expression by solid-state cultures on agar plates relative to cultures growing in liquid culture media. Of these 28 genes, 15 genes were upregulated (P < 0.05) after desiccation or by solid-state cultures on agar plates. These 15 genes were cloned into the low-copy-number vector pRK767 under the control of the lacZ promoter. The expression of 6 of these 15 genes increased (P < 0.05) resistance to dry heat and to treatment with pressure of 500 MPa. Our finding extends the knowledge of mechanisms of stress resistance in desiccated Salmonella to improve control of this bacterium in dry food. IMPORTANCE This study directly targeted an increasing threat to food safety and developed knowledge and targeted strategies that can be used by the food industry to help reduce the risk of foodborne illness in their dry products and thereby reduce the overall burden of foodborne illness. Genomic and physiological analyses have elucidated mechanisms of bacterial resistance to many food preservation technologies, including heat, pressure, disinfection chemicals, and UV light; however, information on bacterial mechanisms of resistance to dry heat is scarce. Mechanisms of tolerance to desiccation likely also contribute to resistance to dry heat, but this assumption has not been verified experimentally. It remains unclear how mechanisms of resistance to wet heat relate to dry-heat resistance. Thus, this study will fill a knowledge gap to improve the safety of dry foods.


Subject(s)
Desiccation , Salmonella enterica , Agar , Gene Expression Regulation, Bacterial , Salmonella enterica/genetics , Salmonella enterica/physiology , Stress, Physiological
16.
Foods ; 10(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34574255

ABSTRACT

The exposure of foodborne pathogens such as Salmonella enterica to a sub-lethal stress may protect bacterial cells against distinct stresses during the production of leafy greens, which can constitute potential health hazards to consumers. In this study, we evaluated how the prior exposure of S. enterica to sub-lethal food processing-related stresses influenced its subsequent persistence on baby spinach under cold (4 °C for 7 days) and temperature abuse (37 °C for 2 h + 4 °C for 7 days) conditions. We also compared the survival characteristics of pre-stressed S. enterica and Enterococcus faecium NRRL B-2354 as its surrogate on baby spinach. A cocktail of three S. enterica serovars, as well as S. Typhimurium ATCC 14028 wild type and its ΔrpoS mutant, and E. faecium NRRL B-2354, was first exposed to sub-lethal desiccation, oxidation, heat shock, and acid stresses. Afterward, baby spinach was inoculated with unstressed or pre-stressed cells at 7.0 log CFU/sample unit, followed by 7-day storage under cold and temperature abuse conditions. The unstressed S. enterica (fresh cells in sterile 0.85% saline) decreased rapidly within the first day and thereafter persisted around 5.5 log CFU/sample unit under both conditions. The desiccation-stressed S. enterica showed the highest bacterial counts (p < 0.05) compared to other conditions. The unstressed S. enterica survived better (p < 0.05) than the oxidation- and acid-stressed S. enterica, while there were no significant differences (p > 0.05) between the unstressed and heat-shocked S. enterica. Unlike the wild type, temperature abuse did not lead to the enhanced survival of the ΔrpoS mutant after exposure to desiccation stress, indicating that the rpoS gene could play a critical role in the persistence of desiccation-stressed S. enterica subjected to temperature abuse. E. faecium NRRL B-2354 was more persistent (p < 0.05) than the pre-stressed S. enterica under both conditions, suggesting its use as a suitable surrogate for pre-stressed S. enterica by providing a sufficient safety margin. Our results demonstrate the merit of considering the prior exposure of foodborne pathogens to sub-lethal stresses when validating the storage conditions for leafy greens.

17.
Animals (Basel) ; 11(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34438845

ABSTRACT

Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world's most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and southern Chile. We analyzed 446 cattle fecal samples and isolated non-O157 STEC from 12.6% (56/446); a total of 93 different isolates were recovered. Most isolates displayed ß-glucuronidase activity (96.8%; 90/93) and fermented sorbitol (86.0%; 80/93), whereas only 39.8% (37/93) were resistant to tellurite. A subgroup of 30 representative non-O157 STEC isolates was selected for whole-genome sequencing and bioinformatics analysis. In silico analysis showed that they grouped into 16 different sequence types and 17 serotypes; the serotypes most frequently identified were O116:H21 and O168:H8 (13% each). A single isolate of serotype O26:H11 was recovered. One isolate was resistant to tetracycline and carried resistance genes tet(A) and tet(R); no other isolate displayed antimicrobial resistance or carried antimicrobial resistance genes. The intimin gene (eae) was identified in 13.3% (4/30) of the genomes and 90% (27/30) carried the stx2 gene. A phylogenetic reconstruction demonstrated that the isolates clustered based on serotypes, independent of geographical origin. These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of critical virulence genes.

18.
Food Microbiol ; 99: 103821, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119106

ABSTRACT

Shiga toxin-producing E. coli (STEC) are major foodborne pathogens. While many studies have focused on the "top-7 STEC", little is known for minor serogroups. A total of 284 non-top-7 STEC strains isolated from cattle feces were subjected to whole-genome sequencing (WGS) to determine the serotypes, the presence of virulence genes and antimicrobial resistance (AMR) determinants. Nineteen typeable and three non-typeable serotypes with novel O-antigen loci were identified. Twenty-one AMR genes and point mutations in another six genes that conferred resistance to 10 antimicrobial classes were detected, as well as 46 virulence genes. The distribution of 33 virulence genes and 15 AMR determinants exhibited significant differences among serotypes (p < 0.05). Among all strains, 81.7% (n = 232) and 14.1% (n = 40) carried stx2 and stx1 only, respectively; only 4.2% (n = 12) carried both. Subtypes stx1a, stx1c, stx2a, stx2c, stx2d, and stx2g were identified. Forty-six strains carried eae and stx2a and therefore had the potential cause severe diseases; 47 strains were genetically related to human clinical strains inferred from a pan-genome phylogenetic tree. We were able to demonstrate the utility of WGS as a surveillance tool to characterize the novel serotypes, as well as AMR and virulence profiles of uncommon STEC that could potentially cause human illness.


Subject(s)
Cattle Diseases/microbiology , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , Phylogeny , Serogroup , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , Virulence , Whole Genome Sequencing
19.
Genomics ; 113(3): 1366-1377, 2021 05.
Article in English | MEDLINE | ID: mdl-33716184

ABSTRACT

Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.


Subject(s)
Nanopores , Escherichia coli , Genome, Bacterial , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Sequence Analysis, DNA/methods , Staphylococcus aureus
20.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271875

ABSTRACT

Oxford Nanopore sequencing can be used to achieve complete bacterial genomes. However, the error rates of Oxford Nanopore long reads are greater compared to Illumina short reads. Long-read assemblers using a variety of assembly algorithms have been developed to overcome this deficiency, which have not been benchmarked for genomic analyses of bacterial pathogens using Oxford Nanopore long reads. In this study, long-read assemblers, namely Canu, Flye, Miniasm/Racon, Raven, Redbean, and Shasta, were thus benchmarked using Oxford Nanopore long reads of bacterial pathogens. Ten species were tested for mediocre- and low-quality simulated reads, and 10 species were tested for real reads. Raven was the most robust assembler, obtaining complete and accurate genomes. All Miniasm/Racon and Raven assemblies of mediocre-quality reads provided accurate antimicrobial resistance (AMR) profiles, while the Raven assembly of Klebsiella variicola with low-quality reads was the only assembly with an accurate AMR profile among all assemblers and species. All assemblers functioned well for predicting virulence genes using mediocre-quality and real reads, whereas only the Raven assemblies of low-quality reads had accurate numbers of virulence genes. Regarding multilocus sequence typing (MLST), Miniasm/Racon was the most effective assembler for mediocre-quality reads, while only the Raven assemblies of Escherichia coli O157:H7 and K. variicola with low-quality reads showed positive MLST results. Miniasm/Racon and Raven were the best performers for MLST using real reads. The Miniasm/Racon and Raven assemblies showed accurate phylogenetic inference. For the pan-genome analyses, Raven was the strongest assembler for simulated reads, whereas Miniasm/Racon and Raven performed the best for real reads. Overall, the most robust and accurate assembler was Raven, closely followed by Miniasm/Racon.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/classification , Bacteria/drug effects , Bacteria/pathogenicity , Computational Biology/methods , Drug Resistance, Bacterial , Multilocus Sequence Typing , Phylogeny , Reproducibility of Results , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL