Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 204: 106113, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277413

ABSTRACT

Plant essential oils (EOs)-based acaricides have been recognized as environmentally-friendly alternatives to synthetic acaricides because of their low toxicity against non-target species. Despite this, there are knowledge gaps regarding the toxicity mechanisms of plant EOs against non-target species. Here, the toxicology and enzymatic mechanism of Citrus reticulata and Citrus lemon EOs were evaluated against the vector pest, Haemaphysalis longicornis, and non-target ladybird beetle, Harmonia axyridis. Both EOs were mainly composed of d-Limonene, followed by ß-Myrcene and γ-Terpinene in C. reticulata, and (-)-ß-Pinene and γ-Terpinene in C. lemon. Citrus reticulata and C. lemon EOs were toxic to Hae. longicornis, with 50 % lethal concentration (LC50) values estimated at 0.43 and 0.98 µL/mL via nymphal immersion test, and 42.52 and 46.38 µL/mL via spray application, respectively. Among the constituents tested, ß-Myrcene was the most effective, with LC50 values of 0.17 and 47.87 µL/mL via immersion and spray treatment, respectively. A significant mortality of non-target Har. axyridis was found when treated by the EOs at concentrations two times greater than LC50 estimated against H. longicornis. The biochemical assay revealed that the EOs induced changes in the antioxidant enzyme activity of superoxide dismutases, catalase, and glutathione peroxidase in Hae. longicornis and Har. axyridis. The results demonstrated the acaricidal potential of citrus EOs and their major constituents for tick control, revealed the risk of the EOs to non-target species, and provided relevant insights into the mechanisms underlying their toxicity.


Subject(s)
Acaricides , Citrus , Coleoptera , Ixodidae , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/toxicity , Coleoptera/drug effects , Ixodidae/drug effects , Ixodidae/enzymology , Acaricides/pharmacology , Acaricides/toxicity , Cyclohexane Monoterpenes , Bicyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/toxicity , Acyclic Monoterpenes/pharmacology , Limonene/pharmacology , Monoterpenes/pharmacology , Monoterpenes/toxicity , Cyclohexenes/toxicity , Cyclohexenes/pharmacology , Terpenes/pharmacology , Catalase/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Haemaphysalis longicornis
2.
Parasit Vectors ; 17(1): 218, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735919

ABSTRACT

BACKGROUND: Epigenetic modifications of histones play important roles in the response of eukaryotic organisms to environmental stress. However, many histone acetyltransferases (HATs), which are responsible for histone acetylation, and their roles in mediating the tick response to cold stress have yet to be identified. In the present study, HATs were molecularly characterized and their associations with the cold response of the tick Haemaphysalis longicornis explored. METHODS: HATs were characterized by using polymerase chain reaction (PCR) based on published genome sequences, followed by multiple bioinformatic analyses. The differential expression of genes in H. longicornis under different cold treatment conditions was evaluated using reverse transcription quantitative PCR (RT-qPCR). RNA interference was used to explore the association of HATs with the cold response of H. longicornis. RESULTS: Two HAT genes were identified in H. longicornis (Hl), a GCN5-related N-acetyltransferase (henceforth HlGNAT) and a type B histone acetyltransferase (henceforth HlHAT-B), which are respectively 960 base pairs (bp) and 1239 bp in length. Bioinformatics analysis revealed that HlGNAT and HlHAT-B are unstable hydrophilic proteins characterized by the presence of the acetyltransferase 16 domain and Hat1_N domain, respectively. RT-qPCR revealed that the expression of HlGNAT and HlHAT-B decreased after 3 days of cold treatment, but gradually increased with a longer period of cold treatment. The mortality rate following knockdown of HlGNAT or HlHAT-B by RNA interference, which was confirmed by RT-qPCR, significantly increased (P < 0.05) when H. longicornis was treated at the lowest lethal temperature (- 14 °C) for 2 h. CONCLUSIONS: The findings demonstrate that HATs may play a crucial role in the cold response of H. longicornis. Thus further research is warranted to explore the mechanisms underlying the epigenetic regulation of the cold response in ticks.


Subject(s)
Cold Temperature , Haemaphysalis longicornis , Histone Acetyltransferases , Animals , Cold-Shock Response/genetics , Computational Biology , Epigenesis, Genetic , Haemaphysalis longicornis/enzymology , Haemaphysalis longicornis/genetics , Haemaphysalis longicornis/physiology , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Phylogeny , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL