Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nucleic Acids Res ; 51(W1): W553-W559, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37216588

ABSTRACT

Understanding the relationship between fine-scale spatial organization and biological function necessitates a tool that effectively combines spatial positions, morphological information, and spatial transcriptomics (ST) data. We introduce the Spatial Multimodal Data Browser (SMDB, https://www.biosino.org/smdb), a robust visualization web service for interactively exploring ST data. By integrating multimodal data, such as hematoxylin and eosin (H&E) images, gene expression-based molecular clusters, and more, SMDB facilitates the analysis of tissue composition through the dissociation of two-dimensional (2D) sections and the identification of gene expression-profiled boundaries. In a digital three-dimensional (3D) space, SMDB allows researchers to reconstruct morphology visualizations based on manually filtered spots or expand anatomical structures using high-resolution molecular subtypes. To enhance user experience, it offers customizable workspaces for interactive exploration of ST spots in tissues, providing features like smooth zooming, panning, 360-degree rotation in 3D and adjustable spot scaling. SMDB is particularly valuable in neuroscience and spatial histology studies, as it incorporates Allen's mouse brain anatomy atlas for reference in morphological research. This powerful tool provides a comprehensive and efficient solution for examining the intricate relationships between spatial morphology, and biological function in various tissues.


Subject(s)
Gene Expression Profiling , Software , Animals , Mice , Brain/anatomy & histology , Transcriptome
3.
J Proteome Res ; 22(5): 1546-1556, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37000949

ABSTRACT

Multiomics profiling provides a holistic picture of a condition being examined and captures the complexity of signaling events, beginning from the original cause (environmental or genetic), to downstream functional changes at multiple molecular layers. Pathway enrichment analysis has been used with multiomics data sets to characterize signaling mechanisms. However, technical and biological variability between these layered data limit an integrative computational analyses. We present a Boolean network-based method, multiomics Boolean Omics Network Invariant-Time Analysis (mBONITA), to integrate omics data sets that quantify multiple molecular layers. mBONITA utilizes prior knowledge networks to perform topology-based pathway analysis. In addition, mBONITA identifies genes that are consistently modulated across molecular measurements by combining observed fold-changes and variance, with a measure of node (i.e., gene or protein) influence over signaling, and a measure of the strength of evidence for that gene across data sets. We used mBONITA to integrate multiomics data sets from RAMOS B cells treated with the immunosuppressant drug cyclosporine A under varying O2 tensions to identify pathways involved in hypoxia-mediated chemotaxis. We compare mBONITA's performance with 6 other pathway analysis methods designed for multiomics data and show that mBONITA identifies a set of pathways with evidence of modulation across all omics layers. mBONITA is freely available at https://github.com/Thakar-Lab/mBONITA.


Subject(s)
Multiomics , Proteomics , Proteomics/methods , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...