Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
J Environ Sci (China) ; 149: 465-475, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181659

ABSTRACT

VOCs (Volatile organic compounds) exert a vital role in ozone and secondary organic aerosol production, necessitating investigations into their concentration, chemical characteristics, and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution. From July to October 2020, online monitoring was conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity. Additionally, the PMF (positive matrix factorization) method was utilized to identify the VOCs sources. Results indicated that the TVOCs (total VOCs) concentration was (96.7 ± 63.4 µg/m3), with alkanes exhibiting the highest concentration of (36.1 ± 26.4 µg/m3), followed by OVOCs (16.4 ± 14.4 µg/m3). The key active components were alkenes and aromatics, among which xylene, propylene, toluene, propionaldehyde, acetaldehyde, ethylene, and styrene played crucial roles as reactive species. The sources derived from PMF analysis encompassed vehicle emissions, solvent and coating sources, combustion sources, industrial emissions sources, as well as plant sources, the contribution of which were 37.80%, 27.93%, 16.57%, 15.24%, and 2.46%, respectively. Hence, reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.


Subject(s)
Air Pollutants , Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , China , Vehicle Emissions/analysis , Cities , Air Pollution/statistics & numerical data , Air Pollution/prevention & control , Air Pollution/analysis
2.
Int Immunopharmacol ; 142(Pt A): 112893, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217878

ABSTRACT

BACKGROUND: Osteoporosis(OP) is a bone disease under research. Iron overload is a significant risk factor. Iron balance is crucial for bone metabolism and biochemical processes. When there is an excess of iron in the body, it tends to produce reactive oxygen species (ROS) which can cause oxidative damage to cells. The flavonoid compound, Cardamonin (CAR), possesses potent anti-inflammatory and anti-iron overload properties that can be beneficial in mitigating the risk of OP. PURPOSE: This study investigates the potential therapeutic interventions and underlying mechanisms of CAR for treating OP in individuals with iron overload. METHODS: The model of iron-overloaded mice was established by intraperitoneally injecting iron dextran(ID) into the mice. OP severity was evaluated with micro-CT and Hematoxylin-Eosin (HE) staining in vivo. In vitro, the iron-overloaded osteoblast model was induced by ferric ammonium citrate. Cell counting kit 8 assay to evaluate cell viability, Annexin V-FITC/PI assay to detect cell apoptosis. A range of cellular markers were detected, including the variation in mitochondrial membrane potential (MMP), levels of malondialdehyde (MDA), ROS, and lipid hydroperoxide (LPO). RESULTS: CAR can reverse bone loss in iron overload-induced OP mouse models in vivo. CAR attenuates the impairment of iron overload on the activity and apoptosis of MC3T3-E1 cells as well as the accumulation of ROS and LPO activation via HIF-1α/ROS pathways. CONCLUSION: CAR downregulating HIF-1α pathways prevents inhibition of iron overload-induced osteoblasts dysfunctional by attenuating ROS accumulation, reducing oxidative stress, promotes bone formation, and alleviates OP.

3.
Dev Cell ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197453

ABSTRACT

Loss of phosphatase and tensin homolog (PTEN) has been linked to an immunosuppressive tumor microenvironment, but its underlying mechanisms remain largely enigmatic. Here, we report that PTEN can be secreted by the transmembrane emp24 domain-containing protein 10 (TMED10)-channeled protein secretion pathway. Inhibiting PTEN secretion from tumor cells contributes to immunosuppression and impairs the tumor-suppressive role of PTEN, while intratumoral injection of PTEN protein promotes antitumor immunity and suppresses tumor growth in mice. Mechanistically, extracellular PTEN binds to the plexin domain-containing protein 2 (PLXDC2) on macrophages, triggering subsequent activation of JAK2-STAT1 signaling, which switches tumor-associated macrophages (TAMs) from the immunosuppressive to inflammatory phenotype, leading to enhanced activation of CD8+ T and natural killer cells. Importantly, PTEN treatment also enhances the therapeutic efficacy of anti-PD-1 treatment in mice and reverses the immune-suppressive phenotype of patient-derived primary TAMs. These data identify a cytokine-like role of PTEN in immune activation and tumor suppression and demonstrate the therapeutic potential for extracellular administration of PTEN in cancer immunotherapy.

4.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39174030

ABSTRACT

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Subject(s)
Central Nervous System Protozoal Infections , Naegleria fowleri , Humans , Naegleria fowleri/isolation & purification , Naegleria fowleri/genetics , Taiwan/epidemiology , Central Nervous System Protozoal Infections/parasitology , Central Nervous System Protozoal Infections/diagnosis , Central Nervous System Protozoal Infections/epidemiology , Fatal Outcome , Male , Meningoencephalitis/parasitology , Meningoencephalitis/diagnosis , Amebiasis/diagnosis , Amebiasis/parasitology , Adult
5.
Anim Reprod Sci ; 270: 107576, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39178587

ABSTRACT

As a new mechanism of intercellular communication, the uptake of extracellular vesicles (EVs) by receptor cells has become a hot topic in the field. Previously, research on the uptake of EVs has focused on the mechanism of small EVs (sEVs, also known as exosomes). As sEVs represent a mixed heterogeneous population, the issue of whether there are different uptake mechanisms for different subsets of sEVs by recipient cells urgently need to be addressed. There are EVs in follicular fluid, which play an important role in the communication between follicular cells and the development of oocytes. Previously, we isolated two subtypes of sEVs in follicular fluid: low density-sEVs (LD-sEVs) and high density-sEVs (HD-sEVs). The current study aimed to explore the uptake characteristics of these two subtypes of sEVs by granulosa cells. First, PKH67 was used to label the two sEVs subtypes, and we observed their uptake by granulosa cells using confocal microscopy and flow cytometry. We then explored the specific mechanisms underlying uptake of these two sEV subtypes by granulosa cells using specific inhibitors and RNA interference. The results showed that granulosa cells took up both kinds of sEVs through a clathrin-independent pathway. In addition to requiring caveolin, cholesterol, and Na+/H+ exchange, the uptake of HD-sEVs also depended on the activity of tyrosine kinase and phosphoinositide 3-kinase. A better understanding of the mechanism of granulosa cell uptake of different subtypes of sEVs in follicular fluid is of considerable significance leading to more accurate use of EVs for targeted treatment of infertility and other related diseases.

6.
Sci Total Environ ; 950: 175340, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39117216

ABSTRACT

Ozone (O3) pollution with excessive near-surface O3 levels has been an important environmental issue in China, although the anthropogenic emission reductions (AER) have improved air quality since 2013. In this study, we investigated the sensitivities of atmospheric chemical environment with the urban and rural changes to the AER targeting a typical O3 pollution episode over North China in summer 2019, by conducting two WRF-Chem simulation experiments under two scenarios of anthropogenic emission inventories of years 2012 and 2019 with the meteorological conditions in the 2019 summertime O3 pollution episode for excluding the meteorological impacts on O3 pollution. The results show that the unbalanced AER aroused more serious O3 pollution in urban and rural areas. The intense NO reduction was responsible for the significant increments of urban O3, while the falling NO2 and NO synergistically devoted to the slight O3 variations in rural areas. Induced by the recent-year AER, the urban O3 production was governed by VOCs-limited and transition regime, whereas the NOx-limited regime dominated over rural areas in North China. Also, the AER reinforced the atmospheric oxidation capacity with the elevations of atmospheric oxidants O3 and ROx radicals, strengthening the chemical conversions to secondary inorganic particles. In both urban and rural areas, the sharp drop in SO2 caused a decrease in sulfate fraction, while the enhanced AOC accelerated the transformation to nitrate even when NOx was reduced. The AER induced nitrate to occupy the principal position in secondary PM2.5 in urban and rural areas. The AER promoted daytime and suppressed nighttime the nitrate production in urban areas, and more vigorous conversion of secondary aerosols were found in rural areas with much lower AOC increments. This study provides insights from a case study over North China in distinct responses of urban and rural O3 pollution with secondary particle changes to AER in urban and rural atmospheric environment changes, with implications for an effective abatement strategy on O3 pollution.

7.
Poult Sci ; 103(10): 104079, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39098297

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. The use of probiotics is an effective approach to reduce aflatoxins content in foods. To find efficient bacterial species that can eliminate or detoxify AFB1, a bacterial strain S51 capable of degrading AFB1 was isolated from chicken intestine and soil samples by using a culture medium containing coumarin as the sole carbon source. Based on the results of 16S rRNA gene sequence analysis, this isolate (strain S51) was identified as Bacillus licheniformis strain QT338. Further characterization of strain S51 showed that it could degrade AFB1 by 61.3% after incubation at 30°C for 72 h. Additional studies demonstrated that S51 promoted good growth performance of the treated chickens, showed no hemolytic activity, carried few drug resistance genes, and exhibited a certain level of tolerance to acid and bile salts. Furthermore, to verify whether strain S51 exerts a protective effect on AFB1-induced liver injury in chickens and to elucidate the underlying mechanism, a chicken toxicity model was induced with AFB1 (100 µg/kg BW) and treated with S51(1×109CFU/mL) for 12 d. The results showed that S51 decreased the level of alanine transaminase, aspartate transaminase, and total bilirubin (P < 0.05); increased glutathione activity and total antioxidant capacityin the liver induced by AFB1, and decreased malondialdehyde production (P < 0.05). S51 also up-regulated the mRNA expression level of the antioxidant proteins HO-1 and Nrf2 and down-regulated the expression of the oxidation-related factor Keap1 in the Nrf2/Keap1 signaling pathway (P <0.05). S51 inhibited hepatocyte apoptosis induced by AFB1 and decreased the mRNA expression levels of the apoptosis-related genes Bax, caspase-3, caspase-9, and Cyt-C (P < 0.05). These results indicate that S51 regulates apoptosis and alleviates AFB1-induced oxidative stress in chicken liver by controlling the Nrf2/Keap1 signaling pathway.

8.
Int J Med Sci ; 21(10): 1990-1999, 2024.
Article in English | MEDLINE | ID: mdl-39113892

ABSTRACT

The T cell immunoglobulin and ITAM domain (TIGIT) is a recently discovered synergistic co-suppressor molecule that plays an important role in immune response and tumor immune escape in the context of cancer. Importantly, CD155 acts as a receptor for TIGIT, and CD155 signaling to immune cells is mediated through interactions with the co-stimulatory immune receptor CD226 (DNAM-1) and the inhibitory checkpoint receptors TIGIT and CD96. Aspirin (ASA) has been shown to reduce the growth and survival of colorectal cancer (CRC) cells, but the immunological mechanisms involved have not been sufficiently elucidated. In the present study the effects of aspirin on CRC in mice and on Jurkat cells were investigated. Aspirin may suppress the expression of TIGIT on T cells and Regulatory T cells (Tregs) and inhibit T cell viability, and therefore induce tumor cell apoptosis. TIGIT is expressed at higher levels on infiltrating lymphocytes within CRC tumor tissue than adjacent. Further, aspirin could inhibit Jurkat cell proliferation and induce apoptosis via downregulation of TIGIT expression and the anti-apoptosis B cell lymphoma 2 (BCL2) protein and upregulation of BCL2-associated X protein (BAX) expression. The present study suggests that aspirin can inhibit specific aspects of T cell function by reducing interleukin-10 and transforming growth factor-ß1 secretion via the TIGIT-BCL2-BAX signaling pathway, resulting in improved effector T cell function that inhibits tumor progression.


Subject(s)
Apoptosis , Aspirin , Colorectal Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Receptors, Immunologic , Signal Transduction , Receptors, Immunologic/metabolism , Humans , Animals , Aspirin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/immunology , Mice , Jurkat Cells , Apoptosis/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism , Cell Proliferation/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Receptors, Virus/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Gene Expression Regulation, Neoplastic/drug effects
9.
Environ Pollut ; 359: 124577, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39032546

ABSTRACT

This study examines the impact of textile dye contamination on the structure of soil fungal communities near a Shaoxing textile dye factory. We quantified the concentrations of various textile dyes, including anthraquinone azodye and phthalocyanine, which ranged from 20.20 to 140.62 mg kg^-1, 102.01-698.12 mg kg^-1, and 7.78-42.65 mg kg^-1, respectively, within a 1000 m radius of the factory. Our findings indicate that as dye concentration increases, the biodiversity of soil fungi, as measured by the Chao1 index, decreases significantly, highlighting the profound influence of dye contamination on fungal community structure. Additionally, microbial correlation network analysis revealed a reduction in fungal interactions correlating with increased dye concentrations. We also observed that textile dyes suppressed carbon and nitrogen metabolism in fungi while elevating the transcription levels of antioxidant-related genes. Enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), laccase (Lac), dye-decolorizing peroxidases (DyPs), and versatile peroxidase (VP) were upregulated in contaminated soils, underscoring the critical role of fungi in dye degradation. These insights contribute to the foundational knowledge required for developing in situ bioremediation technologies for contaminated farmlands.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Fungi , Soil Microbiology , Soil Pollutants , Textiles , Soil/chemistry , Peroxidases/metabolism , Textile Industry
10.
Acta Pharmacol Sin ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030309

ABSTRACT

Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.

11.
Nano Lett ; 24(28): 8778-8783, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976362

ABSTRACT

Coupling Weyl quasiparticles and charge density waves (CDWs) can lead to fascinating band renormalization and many-body effects beyond band folding and Peierls gaps. For the quasi-one-dimensional chiral compound (TaSe4)2I with an incommensurate CDW transition at TC = 263 K, photoemission mappings thus far are intriguing due to suppressed emission near the Fermi level. Models for this unconventional behavior include axion insulator phases, correlation pseudogaps, polaron subbands, bipolaron bound states, etc. Our photoemission measurements show sharp quasiparticle bands crossing the Fermi level at T > TC, but for T < TC, these bands retain their dispersions with no Peierls or axion gaps at the Weyl points. Instead, occupied band edges recede from the Fermi level, opening a spectral gap. Our results confirm localization of quasiparticles (holes created by photoemission) is the key physics, which suppresses spectral weights over an energy window governed by incommensurate modulation and inherent phase defects of CDW.

12.
Front Endocrinol (Lausanne) ; 15: 1393111, 2024.
Article in English | MEDLINE | ID: mdl-38846492

ABSTRACT

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.


Subject(s)
Azoospermia , Fanconi Anemia Complementation Group Proteins , Signal Transduction , Animals , Humans , Male , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Spermatogenesis
13.
Vet Res ; 55(1): 82, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937820

ABSTRACT

Respiratory diseases constitute a major health problem for ruminants, resulting in considerable economic losses throughout the world. Parainfluenza type 3 virus (PIV3) is one of the most important respiratory pathogens of ruminants. The pathogenicity and phylogenetic analyses of PIV3 virus have been reported in sheep and goats. However, there are no recent studies of the vaccination of sheep or goats against PIV3. Here, we developed a purified inactivated ovine parainfluenza virus type 3 (OPIV3) vaccine candidate. In addition, we immunized sheep with the inactivated OPIV3 vaccine and evaluated the immune response and pathological outcomes associated with OPIV3 TX01 infection. The vaccinated sheep demonstrated no obvious symptoms of respiratory tract infection, and there were no gross lesions or pathological changes in the lungs. The average body weight gain significantly differed between the vaccinated group and the control group (P < 0.01). The serum neutralization antibody levels rapidly increased in sheep post-vaccination and post-challenge with OPIV3. Furthermore, viral shedding in nasal swabs and viral loads in the lungs were reduced. The results of this study suggest that vaccination with this candidate vaccine induces the production of neutralizing antibodies and provides significant protection against OPIV3 infection. These results may be helpful for further studies on prevention and control strategies for OPIV3 infections.


Subject(s)
Respirovirus Infections , Sheep Diseases , Vaccines, Inactivated , Viral Vaccines , Animals , Sheep , Respirovirus Infections/veterinary , Respirovirus Infections/prevention & control , Respirovirus Infections/virology , Respirovirus Infections/immunology , Vaccines, Inactivated/immunology , Sheep Diseases/prevention & control , Sheep Diseases/virology , Sheep Diseases/immunology , Viral Vaccines/immunology , Respirovirus/immunology , Immunogenicity, Vaccine , Vaccination/veterinary
14.
Adv Mater ; 36(32): e2406460, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837488

ABSTRACT

Solar fuel synthesis is intriguing because solar energy is abundant and this method compensates for its intermittency. However, most photocatalysts can only absorb UV-to-visible light, while near-infrared (NIR) light remains unexploited. Surprisingly, the charge transfer between ZnO and CuInS2 quantum dots (QDs) can transform a NIR-inactive ZnO into a NIR-active composite. This strong response is attributed to the increased concentration of free charge carriers in the p-type semiconductor at the interface after the charge migration between ZnO and CuInS2, enhancing the localized surface plasmon resonance (LSPR) effect and the NIR response of CuInS2. As a paradigm, this ZnO/CuInS2 heterojunction is used for H2O2 production coupled with glycerin oxidation and demonstrates supreme performance, corroborating the importance of NIR response and efficient charge transfer. Mechanistic studies through contact potential difference (CPD), Hall effect test, and finite element method (FEM) calculation allow for the direct correlation between the NIR response and charge transfer. This approach bypasses the general light response issues, thereby stepping forward to the ambitious goal of harnessing the entire solar spectrum.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124690, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38909556

ABSTRACT

Peanut oil, prized for its unique taste and nutritional value, grapples with the pressing issue of adulteration by cost-cutting vendors seeking higher profits. In response, we introduce a novel approach using near-infrared spectroscopy to non-invasively and cost-effectively identify adulteration in peanut oil. Our study, analyzing spectral data of both authentic and intentionally adulterated peanut oil, successfully distinguished high-quality pure peanut oil (PPEO) from adulterated oil (AO) through rigorous analysis. By combining near-infrared spectroscopy with factor analysis (FA) and partial least squares regression (PLS), we achieved discriminant accuracies exceeding 92 % (S > 2) and 89 % (S > 1) for FA models 1 and 2, respectively. The PLS model demonstrated strong predictive capabilities, with a prediction coefficient (R2) surpassing 93.11 and a root mean square error (RMSECV) below 4.43. These results highlight the effectiveness of NIR spectroscopy in confirming the authenticity of peanut oil and detecting adulteration in its composition.


Subject(s)
Food Contamination , Peanut Oil , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Peanut Oil/analysis , Least-Squares Analysis , Food Contamination/analysis , Chemometrics/methods , Factor Analysis, Statistical
16.
Opt Express ; 32(12): 21017-21027, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859467

ABSTRACT

To achieve real-time phase detection, this paper presents a fast and precise spatial carrier phase-shifting interferometry based on the dynamic mode decomposition strategy. The algorithm initially produces a series of phase-shifted sub-interferograms with the aid of a spatial carrier interferogram. Subsequently, the measured phases are derived with great accuracy from these sub-interferograms through the use of the dynamic mode decomposition strategy, an outstanding non-iterative algorithm. Numerical simulation and experimental comparison show that this method is an efficient and accurate single-frame phase demodulation algorithm. The paper also analyzes the performance of the proposed method based on influencing factors such as random noise level, carrier frequency size, and carrier frequency direction. The results indicate that this method is a fast and accurate phase solution method, offering another effective solution for dynamic real-time phase measurement.

17.
Chin Med J (Engl) ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38855875

ABSTRACT

ABSTRACT: Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.

18.
Macromol Rapid Commun ; : e2400365, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849126

ABSTRACT

Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.

19.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886388

ABSTRACT

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Subject(s)
Biodiversity , Magnoliopsida , Phylogeny , China , Magnoliopsida/growth & development , Altitude , Geological Phenomena , Ecosystem
20.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663278

ABSTRACT

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Subject(s)
Glycerol , Magnesium , Wound Healing , Wound Healing/drug effects , Animals , Glycerol/chemistry , Glycerol/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Mice , Silk/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Bandages , Humans , Rats , Nanofibers/chemistry , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Male , Human Umbilical Vein Endothelial Cells , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL