Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612218

ABSTRACT

Replacing cement with industrial by-products is an important way to achieve carbon neutrality in the cement industry. The purpose of this study is to evaluate the effect of eggshell powder on cement hydration properties, and to evaluate its feasibility as a substitute for cement. The substitution rates of eggshell powder are 0%, 7.5%, and 15%. Studying the heat of hydration and macroscopic properties can yield the following results. First: The cumulative heat of hydration based on each gram of cementitious material falls as the eggshell powder content rises. This is a result of the eggshell powder's diluting action. However, the cumulative heat of hydration per gram of cement rises due to the nucleation effect of the eggshell powder. Second: The compressive strengths of ES0, ES7.5, and ES15 samples at 28 days of age are 54.8, 43.4, and 35.5 MPa, respectively. Eggshell powder has a greater negative impact on the compressive strength. The effect of eggshell powder on the speed and intensity of ultrasonic waves has a similar trend. Third: As the eggshell powder content increases, the resistivity gradually decreases. In addition, we also characterize the microscopic properties of the slurry with added eggshell powder. X-ray Diffraction (XRD) shows that, as the age increases from 1 day to 28 days, hemicaboaluminate transforms into monocaboaluminate. As the content of the eggshell powder increases, FTIR analysis finds a slight decrease in the content of CSH. Similarly, thermogravimetric (TG) results also show a decrease in the production of calcium hydroxide. Although the additional nucleation effect of eggshell powder promotes cement hydration and generates more portlandite, it cannot offset the loss of portlandite caused by the decrease in cement. Last: A numerical hydration model is presented for cement-eggshell powder binary blends. The parameters of the hydration model are determined based on hydration heat normalized by cement mass. Moreover, the hydration heat until 28 days is calculated using the proposed model. The strength development of all specimens and all test ages can be expressed as an exponential function of hydration heat.

2.
Adv Sci (Weinh) ; 11(14): e2308028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308108

ABSTRACT

Design of flexible porous materials where the diffusion of guest molecules is regulated by the dynamics of contracted pore aperture is challenging. Here, a flexible porous self-assembly consisting of 1D channels with dynamic bottleneck gates is reported. The dynamic pendant naphthimidazolylmethyl moieties at the channel necks provide kinetic gate function, that enables unusual adsorption for light hydrocarbons. The adsorption for CO2 is mainly dominated by thermodynamics with the uptakes decreasing with increasing temperature, whereas the adsorptions for larger hydrocarbons are controlled by both thermodynamics and kinetics resulting in an uptake maximum at a temperature threshold. Such an unusual adsorption enables temperature-dependent separation of CO2 from the corresponding hydrocarbons.

3.
Materials (Basel) ; 16(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37834521

ABSTRACT

Blended cement is commonly used for producing sustainable concretes. This paper presents an experimental study and an optimization design of a low-CO2 quaternary binder containing calcined clay, slag, and limestone using the response surface method. First, a Box-Behnken design with three influencing factors and three levels was used for the combination design of the quaternary composite cement. The lower limit of the mineral admixtures was 0%. The upper limits of slag, calcined clay, and limestone powder were 30%, 20%, and 10%, respectively. The water-to-binder ratio (water/binder) was 0.5. Experimental works to examine workability and strength (at 3 and 28 days) were performed for the composite cement. The CO2 emissions were calculated considering binder compositions. A second-order polynomial regression was used to evaluate the experimental results. In addition, a low-CO2 optimization design was conducted for the composite cement using a composite desirability function. The objectives of the optimization design were the target 28-day strength (30, 35, 40, and 45 MPa), target workability (160 mm flow), and low CO2 emissions. The trends of the properties of optimal combinations were consistent with those in the test results. In summary, the proposed optimization design can be used for designing composite cement considering strength, workability, and ecological aspects.

SELECTION OF CITATIONS
SEARCH DETAIL
...