Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Am Chem Soc ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058575

ABSTRACT

Here we report the formation of a 3D NaCl-type binary porous superstructure via coassembly of two colloidal polyhedral metal-organic framework (MOF) particles having complementary sizes, shapes, and charges. We employed a polymeric-attenuated Coulombic self-assembly approach, which also facilitated the coassembly of these MOF particles with spherical polystyrene particles to form 2D binary superstructures. Our results pave the way for using MOFs to create sophisticated superstructures comprising particles of various sizes, shapes, porosities, and chemical compositions.

2.
ACS Pharmacol Transl Sci ; 7(6): 1783-1794, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38898942

ABSTRACT

The stimulator of interferon genes (STING) is a vital protein to the immune surveillance of the tumor microenvironment. In this study, we develop novel inhibitor-based radioligands and evaluate their feasibility for noninvasive visualization of STING expression in tumor-bearing mice. Analogous compounds to STING inhibitors C170 and C176 were synthesized and labeled with 131I and 18F to attain [131I]I-NFIP and [18F]F-NFEP, respectively. The radiosynthesis was achieved with high radiochemical purity (>95%) and molar activity (28.56-48.89 GBq/µmol). The affinity and specificity of tracers were assessed through cell uptake and docking experiments, demonstrating that [131I]I-NFIP exhibited high specificity for STING, with a cell-based IC50 value of 7.56 nM. Small-animal PET/SPECT imaging and biodistribution studies in tumor-bearing mice models were performed to verify the tracers' pharmacokinetics and tumor-targeting capabilities (n = 3/group). SPECT imaging demonstrated that [131I]I-NFIP rapidly accumulated in the Panc02 tumor quickly at 30 min post-injection, with a tumor-to-muscle (T/M) ratio of 2.03 ± 0.30. This ratio significantly decreased in the blocking group (1.10 ± 0.14, **P < 0.01, n = 3). Furthermore, tumor uptake and the T/M ratio of [131I]I-NFIP were positively associated with STING expression. In summary, [131I]I-NFIP is the first STING-specific inhibitor-based radioligand offering the potential for visualizing STING status in tumors.

3.
ACS Appl Mater Interfaces ; 16(26): 34156-34166, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902850

ABSTRACT

In this paper, we successfully synthesize phosphoric acid functionalized graphene oxide (PGO) based on acid modification of graphene oxide. The composite membrane is further prepared by adding PGO into sulfonated poly(aryl ether ketone sulfone) containing carboxyl groups matrix (C-SPAEKS). The PGO as well as the composite membranes were characterized by a series of tests. The prepared composite proton exchange membranes (PEMs) have good mechanical and electrochemical properties. Compared to the C-SPAEKS membrane, the best composite membrane has a tensile strength of 40.7 MPa while exhibiting superior proton conductivity (110.17 mS cm-1 at 80 °C). In addition, the open-circuit voltage and power density of C-SPAEKS@1% PGO are 0.918 V and 792.17 mW cm-2, respectively. Compared with C-SPAEKS (0.867 V and 166 mW cm-2), it can be seen that our work has a certain effect on the improvement of the single cell performance. The above results demonstrate that the functionalized graphene oxide has greatly improved the electrochemical performance and even the overall performance of PEMs.

4.
Biochem Pharmacol ; 225: 116282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762147

ABSTRACT

IPF is a chronic, progressive, interstitial lung disease with high mortality. Current drugs have limited efficacy in curbing disease progression and improving quality of life. Selpercatinib, a highly selective inhibitor of receptor tyrosine kinase RET (rearranged during transfection), was approved in 2020 for the treatment of a variety of solid tumors with RET mutations. In this study, the action and mechanism of Selpercatinib in pulmonary fibrosis were evaluated in vivo and in vitro. In vivo experiments demonstrated that Selpercatinib significantly ameliorated bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro, Selpercatinib inhibited the proliferation, migration, activation and extracellular matrix deposition of fibroblasts by inhibiting TGF-ß1/Smad and TGF-ß1/non-Smad pathway, and suppressed epithelial-mesenchymal transition (EMT) like process of lung epithelial cells via inhibiting TGF-ß1/Smad pathway. The results of in vivo pharmacological tests corroborated the results obtained from the in vitro experiments. Further studies revealed that Selpercatinib inhibited abnormal phenotypes of lung fibroblasts and epithelial cells in part by regulating its target RET. In short, Selpercatinib inhibited the activation of fibroblasts and EMT-like process of lung epithelial cells by inhibiting TGF-ß1/Smad and TGF-ß1/non-Smad pathways, thus alleviating BLM-induced pulmonary fibrosis in mice.


Subject(s)
Bleomycin , Mice, Inbred C57BL , Pulmonary Fibrosis , Signal Transduction , Transforming Growth Factor beta1 , Animals , Bleomycin/toxicity , Transforming Growth Factor beta1/metabolism , Mice , Signal Transduction/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Male , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyridines/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism
5.
J Med Chem ; 67(10): 8460-8472, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717104

ABSTRACT

Recognizing the significance of SPECT in nuclear medicine and the pivotal role of fibroblast activation protein (FAP) in cancer diagnosis and therapy, this study focuses on the development of 99mTc-labeled dimeric HF2 with high tumor uptake and image contrast. The dimeric HF2 was synthesized and radiolabeled with 99mTc in one pot using various coligands (tricine, TPPTS, EDDA, and TPPMS) to yield [99mTc]Tc-TPPTS-HF2, [99mTc]Tc-EDDA-HF2, and [99mTc]Tc-TPPMS-HF2 dimers. SPECT imaging results indicated that [99mTc]Tc-TPPTS-HF2 exhibited higher tumor uptake and tumor-to-normal tissue (T/NT) ratio than [99mTc]Tc-EDDA-HF2 and [99mTc]Tc-TPPMS-HF2. Notably, [99mTc]Tc-TPPTS-HF2 exhibited remarkable tumor accumulation and retention in HT-1080-FAP and U87-MG tumor-bearing mice, thereby surpassing the monomeric [99mTc]Tc-TPPTS-HF. Moreover, [99mTc]Tc-TPPTS-HF2 achieved acceptable T/NT ratios in the hepatocellular carcinoma patient-derived xenograft (HCC-PDX) model, which provided identifiable contrast and imaging quality. In conclusion, this study presents proof-of-concept research on 99mTc-labeled FAP inhibitor dimers for the visualization of multiple tumor types. Among these candidate compounds, [99mTc]Tc-TPPTS-HF2 showed excellent clinical potential, thereby enriching the SPECT tracer toolbox.


Subject(s)
Organotechnetium Compounds , Tomography, Emission-Computed, Single-Photon , Animals , Humans , Mice , Tomography, Emission-Computed, Single-Photon/methods , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Organotechnetium Compounds/chemical synthesis , Cell Line, Tumor , Drug Design , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Technetium/chemistry , Tissue Distribution , Dimerization , Mice, Nude , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Endopeptidases/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry
6.
J Med Chem ; 67(10): 8361-8371, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726551

ABSTRACT

Due to the complex heterogeneity in different cancer types, the heterodimeric strategy has been intensively practiced to improve the effectiveness of tumor diagnostics. In this study, we developed a series of novel 18F-labeled biotin/FAPI-conjugated heterobivalent radioligands ([18F]AlF-NSFB, [18F]AlF-NSFBP2, and [18F]AlF-NSFBP4), synergistically targeting both fibroblast activation protein (FAP) and biotin receptor (BR), to enhance specific tumor uptake and retention. The in vitro and in vivo biological properties of these dual-targeting tracers were evaluated, with a particular focus on positron emission tomography imaging in A549 and HT1080-FAP tumor-bearing mice. Notably, in comparison to the corresponding FAP-targeted monomer [18F]AlF-NSF, biotin/FAPI-conjugated heterodimers exhibited a high uptake in tumor and prolong retention. In conclusion, as a proof-of-concept study, the findings validated the superiority of biotin/FAPI-conjugated heterodimers and the positive influence of biotin and linker on pharmacokinetics of radioligands. Within them, the bispecific [18F]AlF-NSFBP4 holds significant promise as a candidate for further clinical translational studies.


Subject(s)
Biotin , Fluorine Radioisotopes , Animals , Humans , Fluorine Radioisotopes/chemistry , Biotin/chemistry , Biotin/pharmacokinetics , Mice , Drug Design , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Positron-Emission Tomography , Mice, Nude , Tissue Distribution , Dimerization , Cell Line, Tumor , Mice, Inbred BALB C
7.
Mol Pharm ; 21(4): 1942-1951, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447198

ABSTRACT

The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.


Subject(s)
Benzimidazoles , Fluorine Radioisotopes , Positron-Emission Tomography , Tumor Microenvironment , Cell Line, Tumor , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Humans
8.
J Am Chem Soc ; 146(11): 7159-7164, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38467030

ABSTRACT

Here, we report the synthesis of BCN-93, a meltable, functionalized, and permanently porous metal-organic polyhedron (MOP) and its subsequent transformation into amorphous or crystalline, shaped, self-standing, transparent porous films via melting and subsequent cooling. The synthesis entails the outer functionalization of a MOP with meltable polymer chains: in our model case, we functionalized a Rh(II)-based cuboctahedral MOP with poly(ethylene glycol). Finally, we demonstrate that once melted, BCN-93 can serve as a porous matrix into which other materials or molecules can be dispersed to form mixed-matrix composites. To illustrate this, we combined BCN-93 with one of various additives (either two MOF crystals, a porous cage, or a linear polymer) to generate a series of mixed-matrix films, each of which exhibited greater CO2 uptake relative to the parent film.

9.
Eur J Med Res ; 29(1): 176, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491523

ABSTRACT

Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , RNA, Long Noncoding/genetics , Prognosis , Reproducibility of Results , Precision Medicine , Kidney Neoplasms/genetics , Apoptosis , Tumor Microenvironment
10.
Heliyon ; 9(11): e20914, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027732

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an incurable chronic progressive disease with a low survival rate and ineffective therapeutic options. We examined the effects of imrecoxib, a nonsteroidal anti-inflammatory drug, on experimental pulmonary fibrosis. The mouse IPF model was established by intratracheal instillation of bleomycin. From Day 0 to Day 13, the mice were orally administered imrecoxib (100 mg/kg) and pirfenidone (200 mg/kg) daily, and from Day 7 to Day 13, the mice were orally administered pirfenidone and imrecoxib daily. The tissues were dissected on the 14th day. Mouse body weight was measured, and histopathological examination and hydroxyproline content analysis confirmed that the administration of imrecoxib exerted a similar effect to pirfenidone. Compared with bleomycin-induced mice, imrecoxib-treated mice showed significantly reduced inflammatory factor expression (IL-1 and TNF-α) and inflammatory cell numbers (macrophages, lymphocytes, and neutrophils) in BALF (bronchoalveolar lavage fluid). Our experiment tested the ability of imrecoxib to inhibit the signal pathway involved in gene expression induced by TGF-ß1 in the NIH-3T3 cell line in vitro. Western blotting showed that imrecoxib (20 µM and 40 µM) inhibited the expression of fibronectin, type I collagen and CTGF. In addition, imrecoxib reduced the levels of p-ERK1/2. The changes in the expression of related proteins in mouse lung tissue were similar to those in cells. In summary, our findings suggested that the administration of imrecoxib prevented and treated murine IPF by inhibiting inflammation and the TGF-ß1-ERK1/2 signaling pathway.

11.
Medicine (Baltimore) ; 102(34): e34786, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653791

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is associated with complex immune interactions. We conducted a comprehensive analysis of immune-related differentially expressed genes in patients with ccRCC using data from The Cancer Genome Atlas and ImmPort databases. The immune-related differentially expressed genes underwent functional and pathway enrichment analysis, followed by COX regression combined with LASSO regression to construct an immune-related risk prognostic model. The model comprised 4 IRGs: CLDN4, SEMA3G, CAT, and UCN. Patients were stratified into high-risk and low-risk groups based on the median risk score, and the overall survival rate of the high-risk group was significantly lower than that of the low-risk group, confirming the reliability of the model from various perspectives. Further comparison of immune infiltration, tumor mutation load, and immunophenoscore (IPS) comparison between the 2 groups indicates that the high-risk group could potentially demonstrate a heightened sensitivity towards immunotherapy checkpoints PD-1, CTLA-4, IL-6, and LAG3 in ccRCC patients. The proposed model not only applies to ccRCC but also shows potential in developing into a prognostic model for renal cancer, thus introducing a novel approach for personalized immunotherapy in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/therapy , Prognosis , Reproducibility of Results , Kidney Neoplasms/therapy , Immunotherapy
12.
J Am Chem Soc ; 145(37): 20163-20168, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672353

ABSTRACT

Self-assembly of colloidal particles into ordered superstructures is an important strategy to discover new materials, such as catalysts, plasmonic sensing materials, storage systems, and photonic crystals (PhCs). Here we show that porous covalent organic frameworks (COFs) can be used as colloidal building particles to fabricate porous PhCs with an underlying face-centered cubic (fcc) arrangement. We demonstrate that the Bragg reflection of these can be tuned by controlling the size of the COF particles and that species can be adsorbed within the pores of the COF particles, which in turn alters the Bragg reflection. Given the vast number of existing COFs, with their rich properties and broad modularity, we expect that our discovery will enable the development of colloidal PhCs with unprecedented functionality.

13.
Molecules ; 28(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630287

ABSTRACT

(1) Background: Heart failure (HF) is the final stage of multiple cardiac diseases, which have now become a severe public health problem worldwide. ß-Adrenergic receptor (ß-AR) overactivation is a major pathological factor associated with multiple cardiac diseases and mediates cardiac fibrosis and inflammation. Previous research has demonstrated that Bruton's tyrosine kinase (BTK) mediated cardiac fibrosis by TGF-ß related signal pathways, indicating that BTK was a potential drug target for cardiac fibrosis. Zanubrutinib, a second-generation BTK inhibitor, has shown anti-fibrosis effects in previous research. However, it is unclear whether Zanubrutinib can alleviate cardiac fibrosis induced by ß-AR overactivation; (2) Methods: In vivo: Male C57BL/6J mice were treated with or without the ß-AR agonist isoproterenol (ISO) to establish a cardiac fibrosis animal model; (3) Results: In vivo: Results showed that the BTK inhibitor Zanubrutinib (ZB) had a great effect on cardiac fibrosis and inflammation induced by ß-AR. In vitro: Results showed that ZB alleviated ß-AR-induced cardiac fibroblast activation and macrophage pro-inflammatory cytokine production. Further mechanism studies demonstrated that ZB inhibited ß-AR-induced cardiac fibrosis and inflammation by the BTK, STAT3, NF-κB, and PI3K/Akt signal pathways both in vivo and in vitro; (4) Conclusions: our research provides evidence that ZB ameliorates ß-AR-induced cardiac fibrosis and inflammation.


Subject(s)
Heart Diseases , Phosphatidylinositol 3-Kinases , Male , Mice , Animals , Mice, Inbred C57BL , Inflammation/drug therapy , Agammaglobulinaemia Tyrosine Kinase
14.
J Nucl Med ; 64(9): 1449-1455, 2023 09.
Article in English | MEDLINE | ID: mdl-37321827

ABSTRACT

Radiolabeled fibroblast activation protein (FAP) inhibitors (FAPIs) have shown promise as cancer diagnostic agents; however, the relatively short tumor retention of FAPIs may limit their application in radioligand therapy. In this paper, we report the design, synthesis, and evaluation of a FAPI tetramer. The aim of the study was to evaluate the tumor-targeting characteristics of radiolabeled FAPI multimers in vitro and in vivo, thereby providing information for the design of FAP-targeted radiopharmaceuticals based on the polyvalency principle. Methods: FAPI tetramers were synthesized on the basis of FAPI-46 and radiolabeled with 68Ga, 64Cu, and 177Lu. In vitro FAP-binding characteristics were identified using a competitive cell-binding experiment. To evaluate their pharmacokinetics, small-animal PET, SPECT, and ex vivo biodistribution analyses were performed on HT-1080-FAP and U87MG tumor-bearing mice. In addition, the 2 tumor xenografts received radioligand therapy with 177Lu-DOTA-4P(FAPI)4, and the antitumor efficacy of the 177Lu-FAPI tetramer was evaluated and compared with that of the 177Lu-FAPI dimer and monomer. Results: 68Ga-DOTA-4P(FAPI)4 and 177Lu-DOTA-4P(FAPI)4 were highly stable in phosphate-buffered saline and fetal bovine serum. The FAPI tetramer exhibited high FAP-binding affinity and specificity both in vitro and in vivo. 68Ga-, 64Cu-, and 177Lu-labeled FAPI tetramers exhibited higher tumor uptake, longer tumor retention, and slower clearance than FAPI dimers and FAPI-46 in HT-1080-FAP tumors. The uptake (percentage injected dose per gram) of 177Lu-DOTA-4P(FAPI)4, 177Lu-DOTA-2P(FAPI)2, and 177Lu-FAPI-46 in HT-1080-FAP tumors at 24 h was 21.4 ± 1.7, 17.1 ± 3.9, and 3.4 ± 0.7, respectively. Moreover, 68Ga-DOTA-4P(FAPI)4 uptake in U87MG tumors was approximately 2-fold the uptake of 68Ga-DOTA-2P(FAPI)2 (SUVmean, 0.72 ± 0.02 vs. 0.42 ± 0.03, P < 0.001) and more than 4-fold the uptake of 68Ga-FAPI-46 (0.16 ± 0.01, P < 0.001). In the radioligand therapy study, remarkable tumor suppression was observed with the 177Lu-FAPI tetramer in both HT-1080-FAP and U87MG tumor-bearing mice. Conclusion: The satisfactory FAP-binding affinity and specificity, as well as the favorable in vivo pharmacokinetics of the FAPI tetramer, make it a promising radiopharmaceutical for theranostic applications. Improved tumor uptake and prolonged retention of the 177Lu-FAPI tetramer resulted in excellent characteristics for FAPI imaging and radioligand therapy.


Subject(s)
Gallium Radioisotopes , Neoplasms , Humans , Animals , Mice , Tissue Distribution , Gallium Radioisotopes/therapeutic use , Neoplasms/metabolism , Protein Binding , Biological Transport , Positron Emission Tomography Computed Tomography
15.
J Colloid Interface Sci ; 646: 940-949, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37235939

ABSTRACT

The rational design of hierarchical nano-heterojunction electrocatalysts with efficient and durable water splitting performance is a hot research topic in the field of sustainable energy conversion. Herein, chemical vapor deposition methods are exploited to dope N and S elements in a core-shell structured Co3O4@NiMoO4 with a layered structure (N, S-Co3O4@NiMoO4/NF400). The close contact between Co3O4 nanowires and N, S co-doped NiMoO4 cubic arrays facilitates electron transfer. The electronic structure of Ni, Co and Mo atoms could be optimized to enhance their electrical conductivity by modulation of N and S atoms. At current densities of 10 and 200 mA cm-2, N, S-Co3O4@NiMoO4/NF400 has an overpotential of 200, 300 and 71 160 mV for the oxygen evolution reaction and hydrogen evolution reaction, respectively. Its water splitting voltages are 1.45 V and 2 V at 10 and 200 mA cm-2. In addition, N, S-Co3O4@NiMoO4/NF400 can operate stably for 100 h at a current density of 50 mA cm-2. This work provides a new approach to designing bifunctional catalysts with hierarchical heterogeneous structures co-regulated by dual elements.

16.
Eur J Nucl Med Mol Imaging ; 50(9): 2846-2860, 2023 07.
Article in English | MEDLINE | ID: mdl-37097443

ABSTRACT

PURPOSE: Evans blue as an albumin binder has been widely used to improve pharmacokinetics and enhance tumor uptake of radioligands, including prostate-specific membrane antigen (PSMA) targeting agents. The goal of this study is to develop an optimal Evans blue-modified radiotherapeutic agent that could maximize the absolute tumor uptake and tumor absorbed dose thus the therapeutic efficacy to allow treatment of tumors even with moderate level of PSMA expression. METHODS: [177Lu]Lu-LNC1003 was synthesized based on PSMA-targeting agent and Evans blue. Binding affinity and PSMA targeting specificity were verified through cell uptake and competition binding assay in 22Rv1 tumor model that has moderate level of PSMA expression. SPECT/CT imaging and biodistribution studies in 22Rv1 tumor-bearing mice were performed to evaluate the preclinical pharmacokinetics. Radioligand therapy studies were conducted to systematically assess the therapeutic effect of [177Lu]Lu-LNC1003. RESULTS: LNC1003 showed high binding affinity (IC50 = 10.77 nM) to PSMA in vitro, which was comparable with that of PSMA-617 (IC50 = 27.49 nM) and EB-PSMA-617 (IC50 = 7.91 nM). SPECT imaging of [177Lu]Lu-LNC1003 demonstrated significantly improved tumor uptake and retention as compared with [177Lu]Lu-EB-PSMA and [177Lu]Lu-PSMA-617, making it suitable for prostate cancer therapy. Biodistribution studies further confirmed the remarkably higher tumor uptake of [177Lu]Lu-LNC1003 (138.87 ± 26.53%ID/g) over [177Lu]Lu-EB-PSMA-617 (29.89 ± 8.86%ID/g) and [177Lu]Lu-PSMA-617 (4.28 ± 0.25%ID/g) at 24 h post-injection. Targeted radioligand therapy results showed noteworthy inhibition of 22Rv1 tumor growth after administration of a single dose of 18.5 MBq [177Lu]Lu-LNC1003. There was no obvious antitumor effect after [177Lu]Lu-PSMA-617 treatment under the same condition. CONCLUSION: In this study, [177Lu]Lu-LNC1003 was successfully synthesized with high radiochemical purity and stability. High binding affinity and PSMA targeting specificity were identified in vitro and in vivo. With greatly enhanced tumor uptake and retention, [177Lu]Lu-LNC1003 has the potential to improve therapeutic efficacy using significantly lower dosages and less cycles of 177Lu that promises clinical translation to treat prostate cancer with various levels of PSMA expression.


Subject(s)
Glutamate Carboxypeptidase II , Prostatic Neoplasms , Male , Humans , Animals , Mice , Tissue Distribution , Evans Blue/therapeutic use , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/pharmacokinetics , Single Photon Emission Computed Tomography Computed Tomography/methods , Cell Line, Tumor , Lutetium/therapeutic use , Lutetium/pharmacokinetics
17.
Chem Soc Rev ; 52(7): 2528-2543, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36930224

ABSTRACT

Self-assembly of colloidal particles into ordered superstructures enables the development of novel advanced materials for diverse applications such as photonics, electronics, sensing, energy conversion, energy storage, diagnosis, drug or gene delivery, and catalysis. Recently, polyhedral metal-organic framework (MOF) particles have been proposed as promising colloidal particles to form ordered superstructures, based on their colloidal stability, size-tunability, rich polyhedral shapes, porosity and multifunctionality. In this review, we present a comprehensive overview of strategies for the self-assembly of colloidal MOF particles into ordered superstructures of different dimensionalities, highlighting some of their properties and applications, and sharing thoughts on the self-assembly of MOF particles.

18.
Mol Pharm ; 20(2): 1015-1024, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36562303

ABSTRACT

Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.


Subject(s)
Gallium Radioisotopes , Melanoma, Experimental , Animals , Gallium Radioisotopes/chemistry , Tissue Distribution , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/metabolism , Benzamides/chemistry , Positron-Emission Tomography/methods , Pyridines , Cell Line, Tumor , Melanoma, Cutaneous Malignant
19.
Eur J Nucl Med Mol Imaging ; 50(1): 27-37, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066666

ABSTRACT

PURPOSE: Stimulator of interferon genes (STING) protein plays a vital role in the immune surveillance of tumor microenvironment. Monitoring STING expression in tumors benefits the relevant STING therapy. This study aimed to develop a novel 18F-labeled agonist, dimeric amidobenzimidazole (diABZI), and firstly evaluate the feasibility of noninvasive positron emission tomography (PET) imaging of STING expression in the tumor microenvironment. METHODS: An analog of the STING agonist NOTA-DABI was synthesized and labeled with 18F via Al18F-NOTA complexation (denoted as [18F]F-DABI). Physicochemical properties, STING protein-binding affinity, and specificity of [18F]F-DABI were evaluated using cell uptake and docking assays. In vivo small-animal PET imaging and biodistribution studies of [18F]F-DABI in tumor-bearing mice were performed to verify the pharmacokinetics and tumor targeting ability. The correlation between tumor uptake and STING expression was also analyzed. RESULTS: [18F]F-DABI was produced conveniently with high radiochemical yield (44 ± 15%), radiochemical purity (> 97%) and molar activity (15-30 GBq/µmol). In vitro binding assays demonstrated that [18F]F-DABI has a favorable affinity and specificity for STING with a KD of 12.98 ± 2.07 nM. In vivo studies demonstrated the specificity of [18F]F-DABI for PET imaging of STING expression with B16F10 tumor uptake of 10.93 ± 0.93%ID/g, which was significantly different from that of blocking groups (3.13 ± 0.88%ID/g, ***p < 0.0001). Furthermore, tumor uptake of [18F]F-DABI was well positively correlated with STING expression in different tumor types. Biodistribution results demonstrated that [18F]F-DABI was predominately uptaken in the liver and intestines, indicating its hepatobiliary elimination. CONCLUSION: This proof-of-concept study demonstrated a STING-binding radioligand for PET imaging, which could be used as a potential companion diagnostic tool for related STING-agonist therapies.


Subject(s)
Fluorine Radioisotopes , Positron-Emission Tomography , Animals , Mice , Fluorine Radioisotopes/pharmacokinetics , Tissue Distribution , Cell Line, Tumor , Positron-Emission Tomography/methods , Gene Expression , Interferons
20.
Mol Pharm ; 19(10): 3640-3651, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35917335

ABSTRACT

Fibroblast activation protein (FAP), a fundamental component of the tumor stroma, is overexpressed in cancer-associated fibroblasts (CAFs). As a promising theranostic probe, we evaluated whether the FAP inhibitor (FAPI) dimer (DOTA-2P[FAPI]2) is more effective than its monomeric analogs for FAP-targeted radionuclide therapy. [68Ga]Ga/[177Lu]Lu-DOTA-2P(FAPI)2 were assayed in a stability study, small-animal positron emission tomography (PET) and single-photon emission computed tomography (SPECT), biodistribution, and radionuclide therapy to comprehensively evaluate their preclinical pharmacokinetics. The pharmacokinetics of [68Ga]Ga-DOTA-2P(FAPI)2 and [177Lu]Lu-DOTA-2P(FAPI)2 were determined in FAP-positive hepatocellular carcinoma patient-derived xenografts (PDXs) and HT-1080-FAP cell-derived xenografts (CDXs). [68Ga]Ga-DOTA-2P(FAPI)2 and [177Lu]Lu-DOTA-2P(FAPI)2 were stable in phosphate-buffered saline for 4 h. The tumor retention of [68Ga]Ga-DOTA-2P(FAPI)2 was better than that of [68Ga]Ga-FAPI-46 in HT-1080-FAP CDXs, while healthy organs showed low tracer uptake and fast body clearance. In single-photon emission computed tomography, [177Lu]Lu-DOTA-2P(FAPI)2 showed a higher uptake and longer retention for tumors in both PDXs and CDXs from 1-48 h. [177Lu]Lu-DOTA-2P(FAPI)2 showed the best inhibition of tumor growth in PDXs and CDXs. DOTA-2P(FAPI)2 has increased tumor uptake and retention properties compared to FAPI-46, which significantly improves the use of FAPI-based vectors for PET imaging and radionuclide therapy. [177Lu]Lu-DOTA-2P(FAPI)2 may be safe and effective for the treatment of FAP-positive malignant tumors.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Animals , Gallium Radioisotopes , Humans , Membrane Proteins/metabolism , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphates , Positron Emission Tomography Computed Tomography , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL