Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
2.
Sci Rep ; 14(1): 5304, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438398

ABSTRACT

High temperatures (HT) and drought are two major factors restricting wheat growth in the early growth stages. This study investigated the role of glutathione (GSH) amendment (0.0, 0.5, 1.0, and 2.0 mM) to soil in mitigating the adverse effect of HT (33 °C, with 25 °C as a control), water regimes (60% of field capacity and control), and their combinations. HT decreased the length, project area, surface area, volume, and forks of the root, while drought had the reverse effect. Shoot length, leaf area, leaf relative water content, and shoot and root dry matter were significantly decreased by HT and drought, and their combined impact was more noticeable. GSH significantly promoted the root system, shoot growth, and leaf relative water content. The combined treatment reduced chlorophyll a, chlorophyll b, and total chlorophyll. However, 0.5 mM GSH raised chlorophyll a, chlorophyll b, and total chlorophyll by 28.6%, 41.4%, and 32.5%, respectively, relative to 0.0 mM GSH. At combined treatment, 0.5 mM GSH decreased malondialdehyde (MDA) by 29.5% and increased soluble protein content by 24.1%. GSH meaningfully enhanced the activity of superoxide dismutase, catalase, and ascorbate peroxide in different treatments. This study suggested that GSH could protect wheat seedlings from the adverse effects of HT and/or drought stresses.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Triticum , Chlorophyll A , Seedlings , Temperature , Chlorophyll , Glutathione
3.
Foods ; 12(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444233

ABSTRACT

With the continuous improvement of living standards, the preferences of consumers are shifting to rice varieties with high eating and cooking quality (ECQ). Milled rice is mainly composed of starch, protein, and oil, which constitute the physicochemical basis of rice taste quality. This review summarizes the relationship between rice ECQ and its intrinsic ingredients, and also briefly introduces the effects of nitrogen fertilizer management on rice ECQ. Rice varieties with higher AC usually have more long branches of amylopectin, which leach less when cooking, leading to higher hardness, lower stickinesss, and less panelist preference. High PC impedes starch pasting, and it may be hard for heat and moisture to enter the rice interior, ultimately resulting in worse rice eating quality. Rice with higher lipid content had a brighter luster and better eating quality, and starch lipids in rice have a greater impact on rice eating quality than non-starch lipids. The application of nitrogen fertilizer can enhance rice yield, but it also decreases the ECQ of rice. CRNF has been widely used in cereal crops such as maize, wheat, and rice as a novel, environmentally friendly, and effective fertilizer, and could increase rice quality to a certain extent compared with conventional urea. This review shows a benefit to finding more reasonable nitrogen fertilizer management that can be used to regulate the physical and chemical indicators of rice grains in production and to improve the taste quality of rice without affecting yield.

4.
PeerJ ; 10: e13793, 2022.
Article in English | MEDLINE | ID: mdl-36262417

ABSTRACT

Salinity is one of the primary abiotic stresses that cause negative physiological and biochemical changes due to the oxidative stress caused by the generation of reactive oxygen species (ROS). The effect of jasmonic acid (JA) as foliar spray and humic acid (HA) as soil amendment on the growth and biochemical attributes of forage sorghum plants exposed to salinity stress was investigated. Soil treated with NaCl at levels of 0, 2, and 4 g NaCl kg-1 dry soil (designated as S0, S1, and S2) and soil amendment with humic acid at 0, 3, and 6 g HA kg-1 dry soil (designated as HA0, HA1, and HA2). The plants were sprayed with three JA levels, including 0, 5, and 10 mM JA. Salinity stress increased carotenoid and soluble protein content, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. In contrast, salinity stress reduced plant height, leaf area, relative growth rate, proline content, and the activity of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). At the S2 salinity level, HA2 rate increased plant high by 9.7%, relative growth rate by 70.8% and CAT by 45.5, while HA1 increased leaf area by 12.5%, chlorophyll content by 22.3%, carotenoid content by 38.1%, SOD activity by 20.9%, MDA content by 18.0%, POD activity by 24.6% and APX value by 21.7%. At the S2 salinity level, the highest plant height, chlorophyll content, soluble protein content and APX value were recorded at 5 mM JA, while the highest leaf area, the content of carotenoid, proline, and MDA, and the activity of POD and CAT were achieved at 10 mM JA. Generally, 10 mM JA and 3 g HA kg-1 dry soil produced the best positive effects on forage sorghum plants physiological responses. Our study suggested that jasmonic acid and humic acid at appropriate rates can successfully mitigate the adverse effects of salinity stress on forage sorghum.


Subject(s)
Antioxidants , Sorghum , Antioxidants/metabolism , Humic Substances , Sorghum/metabolism , Sodium Chloride/pharmacology , Soil , Saline Solution , Peroxidase/metabolism , Carotenoids , Superoxide Dismutase/metabolism , Proline/metabolism , Chlorophyll/metabolism
5.
Ying Yong Sheng Tai Xue Bao ; 25(2): 488-96, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24830250

ABSTRACT

Five super japonica rice cultivars were grown by mechanical transplanting in field and seven N treatments with total N application rate of 0, 150, 187.5, 225, 262.5, 300 and 337.5 kg x hm(-2) respectively were adopted to study the effects of N rate on rice yield, quality and N use efficiency. The differences between N requirement for obtaining the highest yield and for achieving the best economic benefit were compared. With the increase of N fertilizer rate, the yields of five super japonica rice cultivars increased firstly and then descended, achieving the highest yield at the N level of 300 kg x hm(-2) ranging from 10.33-10.60 kg x hm(-2). Yield increase mainly attributed to the large number of spikelet, for the total spikelet number of each rice cultivar reached the maximum value at the 300 kg x hm(-2) N level. With the increase of N application, the rates of brown rice, milled rice, head milled rice and the protein content of the five super japonica rice cultivars were all increased, and the rates of brown rice, milled rice, head milled rice and the protein con- tent were higher at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 3.3%-4.2%, 2.9%-6.0%, 4.4%-33.7% and 23.8%-44.3%, respectively. While the amylose content, gel consistency and taste value of the five rice cultivars were all decreased, and the amylose content, gel consistency and taste value were lower at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 12.4%-38.9%, 10.3%-28.5% and 20.3%-29.7%, respectively. The chalkiness increased firstly and then decreased while the change of chalky rate varied with the cultivars. With the increase of N application, the N use efficiency, agronomic N use efficiency and physiological N use efficiency decreased while the N uptake of grain increased significantly. If the cost of N fertilizer was taken into account, the N fertilizer amount to obtain the optimal economic benefits would be 275.68 kg x hm(-2) with the corresponding yield of 9.97 t x hm(-2). Therefore, in the existing super rice production, classified management of N fertilizer would be required to meet differentiated demands of high yield, good quality, high efficiency, low N fertilizer input and so on.


Subject(s)
Agriculture/methods , Fertilizers , Food Quality , Nitrogen/analysis , Oryza/physiology , Plant Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...