Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 370
Filter
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727348

ABSTRACT

The porous architectures of oxygen cathodes are highly desired for high-capacity lithium-oxygen batteries (LOBs) to support cathodic catalysts and provide accommodation for discharge products. However, controllable porosity is still a challenge for laminated cathodes with cathode materials and binders, since polymer binders usually shield the active sites of catalysts and block the pores of cathodes. In addition, polymer binders such as poly(vinylidene fluoride) (PVDF) are not stable under the nucleophilic attack of intermediate product superoxide radicals in the oxygen electrochemical environment. The parasitic reactions and blocking effect of binders deteriorate and then quickly shut down the operation of LOBs. Herein, the present work proposes a binder-free three-dimensional (3D) porous graphene (PG) cathode for LOBs, which is prepared by the self-assembly and the chemical reduction of GO with triblock copolymer soft templates (Pluronic F127). The interconnected mesoporous architecture of resultant 3D PG cathodes achieved an ultrahigh capacity of 10,300 mAh g-1 for LOBs. Further, the cathodic catalysts ruthenium (Ru) and manganese dioxide (MnO2) were, respectively, loaded onto the inner surface of PG cathodes to lower the polarization and enhance the cycling performance of LOBs. This work provides an effective way to fabricate free-standing 3D porous oxygen cathodes for high-performance LOBs.

2.
Respir Res ; 25(1): 226, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811960

ABSTRACT

BACKGROUND: This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS: By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS: The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS: The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.


Subject(s)
Lung Neoplasms , Lymphatic Metastasis , Small Cell Lung Carcinoma , Tomography, X-Ray Computed , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/epidemiology , Small Cell Lung Carcinoma/pathology , Male , Female , Middle Aged , Retrospective Studies , Aged , Lymphatic Metastasis/diagnostic imaging , Incidence , Tomography, X-Ray Computed/methods , Predictive Value of Tests , Contrast Media , Neoplasm Staging/methods , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged, 80 and over , Radiomics
3.
Heliyon ; 10(10): e31312, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813231

ABSTRACT

Numerous researches have reported on the regulatory network of liver regeneration induced by partial hepatectomy (PH). However, information on key molecules and/or signaling pathways regulating the termination stage of liver regeneration remains limited. In this study, we identify hepatic mitotic arrest deficient 1 (MAD1) as a crucial regulator of transforming growth factor ß (TGF-ß) in the hepatocyte to repress liver regeneration. MAD1 has a low expression level at the rapid proliferation phase but significantly increases at the termination phase of liver regeneration. We show that MAD1 deficiency accelerates hepatocyte proliferation and enhances mitochondrial biogenesis and respiratory. Mechanistically, MAD1 deficiency in hepatocytes enhances mitochondrial function and promotes hepatocyte proliferation by suppressing TGF-ß signaling. Our study reveals MAD1 as a novel suppressor of hepatocyte proliferation, which may provide a new therapeutic target for the recovery of liver function after liver transplant and partial hepatectomy.

4.
J Hazard Mater ; 472: 134604, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38759283

ABSTRACT

Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 µM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.


Subject(s)
Chemical Warfare Agents , Fluorescent Dyes , Nerve Agents , Animals , Fluorescent Dyes/chemistry , Nerve Agents/analysis , Nerve Agents/toxicity , Chemical Warfare Agents/analysis , Mice , Humans , Limit of Detection
5.
Nano Lett ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787330

ABSTRACT

While oral probiotics show promise in treating inflammatory bowel disease, the primary challenge lies in sustaining their activity and retention within the inflamed gastrointestinal environment. In this work, we develop an engineered probiotic platform that is armed with biocatalytic and inflamed colon-targeting nanocoatings for multipronged management of IBD. Notably, we achieve the in situ growth of artificial nanocatalysts on probiotics through a bioinspired mineralization strategy. The resulting ferrihydrite nanostructures anchored on bacteria exhibit robust catalase-like activity across a broad pH range, effectively scavenging ROS to alleviate inflammation. The further envelopment with fucoidan-based shields confers probiotics with additional inflamed colon-targeting functions. Upon oral administration, the engineered probiotics display markedly improved viability and colonization within the inflamed intestine, and they further elicit boosted prophylactic and therapeutic efficacy against colitis through the synergistic interplay of nanocatalysis-based immunomodulation and probiotics-mediated microbiota reshaping. The robust and multifunctional probiotic platforms offer great potential for the comprehensive management of gastrointestinal disorders.

6.
J Thorac Dis ; 16(3): 1765-1776, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38617761

ABSTRACT

Background: Accurate prediction of occult lymph node metastasis (ONM) is an important basis for determining whether lymph node (LN) dissection is necessary in clinical stage IA lung adenocarcinoma patients. The aim of this study is to determine the best machine learning algorithm for radiomics modeling and to compare the performances of the radiomics model, the clinical-radilogical model and the combined model incorporate both radiomics features and clinical-radilogical features in preoperatively predicting ONM in clinical stage IA lung adenocarcinoma patients. Methods: Patients with clinical stage IA lung adenocarcinoma undergoing curative surgery from one institution were retrospectively recruited and assigned to training and test cohorts. Radiomics features were extracted from the preoperative computed tomography (CT) images of the primary tumor. Seven machine learning algorithms were used to construct radiomics models, and the model with the best performance, evaluated using the area under the curve (AUC), was selected. Univariate and multivariate logistic regression analyses were performed on the clinical-radiological features to identify statistically significant features and to develop a clinical model. The optimal radiomics and clinical models were integrated to build a combined model, and its predictive performance was assessed using receiver operating characteristic curves, Brier score, and decision curve analysis (DCA). Results: This study included 258 patients who underwent resection (training cohort, n=182; test cohort, n=76). Six radiomics features were identified. Among the seven machine learning algorithms, extreme gradient boosting (XGB) demonstrated the highest performance for radiomics modeling, with an AUC of 0.917. The combined model improved the AUC to 0.933 and achieved a Brier score of 0.092. DCA revealed that the combined model had optimal clinical efficacy. Conclusions: The superior performance of the combined model, based on XGB algorithm in predicting ONM in patients with clinical stage IA lung adenocarcinoma, might aid surgeons in deciding whether to conduct mediastinal LN dissection and contribute to improve patients' prognosis.

7.
Article in English | MEDLINE | ID: mdl-38557630

ABSTRACT

There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.


Subject(s)
Skull , Animals , Mice , Skull/diagnostic imaging , Skull/physiology , Auditory Cortex/physiology , Auditory Cortex/diagnostic imaging , Ultrasonic Waves , Ventral Tegmental Area/physiology , Ventral Tegmental Area/diagnostic imaging , Ventral Tegmental Area/radiation effects , Mice, Inbred C57BL , Male
8.
Int J Nanomedicine ; 19: 2591-2610, 2024.
Article in English | MEDLINE | ID: mdl-38505167

ABSTRACT

Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.


Subject(s)
Exosomes , Extracellular Vesicles , Animals , Drug Delivery Systems/methods , Drug Carriers
9.
Asia Pac J Clin Nutr ; 33(1): 47-55, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494687

ABSTRACT

BACKGROUND AND OBJECTIVES: To assess the vitamin D nutritional status (VDN) of pregnant women in early pregnancy and investigate the effects of periconceptional supplementation with multiple micronutrients (MMs) on this status. METHODS AND STUDY DESIGN: Data were taken from the Pregnancy Health Care System and Hospital Information System in 2018 in Beijing. Vitamin D nutritional status in early pregnancy was evaluated among 4,978 pregnant women, and 4,540 women who took folic acid only (FA) or multiple mi-cronutrients supplements (MM) during the periconceptional period, were include to estimate the associations between periconceptional supplementation with MM and prevalence of vitamin D deficiency or insufficiency with logistic regression model. RESULTS: The mean early-pregnancy vitamin D concentration was 18.6 (±7.5) ng/mL, and the rates of deficiency and insufficiency were 31.6% and 60.5%, respectively. Compared to the FA group, the adjusted odds ratio (aOR, 95%confidence interval, CI) for insufficiency or deficiency of the MM group were 0.25(0.18-0.34), and the aOR (95%CI) for deficiency of the MM group were 0.17 (0.12-0.23). Women who took MMs for a longer period of time, at higher frequencies, and with higher compliance scores had lower rates of deficiency and insufficiency. In winter, spring, and autumn, taking MMs could reduce deficiency by about 70%; in summer, there was little effect. CONCLUSIONS: Among women in Beijing, serum concentrations of vitamin D in early pregnancy are relatively low, and the rates of deficiency and insufficiency are high. Taking MMs during the periconceptional period could improve this situation.


Subject(s)
Nutritional Status , Vitamin D , Pregnancy , Female , Humans , Vitamins , Folic Acid , Dietary Supplements
10.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474674

ABSTRACT

All-inorganic cesium copper halide nanocrystals have attracted extensive attention due to their cost-effectiveness, low toxicity, and rich luminescence properties. However, controlling the synthesis of these nanocrystals to achieve a precise composition and high luminous efficiency remains a challenge that limits their future application. Herein, we report the effect of oleylammonium iodide on the synthesis of copper halide nanocrystals to control the composition and phase and modulate their photoluminescence (PL) quantum yields (QYs). For CsCu2I3, the PL peak is centered at 560 nm with a PLQY of 47.3%, while the PL peak of Cs3Cu2I5 is located at 440 nm with an unprecedently high PLQY of 95.3%. Furthermore, the intermediate-state CsCu2I3/Cs3Cu2I5 heterostructure shows white light emission with a PLQY of 66.4%, chromaticity coordinates of (0.3176, 0.3306), a high color rendering index (CRI) of 90, and a correlated color temperature (CCT) of 6234 K, indicating that it is promising for single-component white-light-emitting applications. The nanocrystals reported in this study have excellent luminescence properties, low toxicity, and superior stability, so they are more suitable for future light-emitting applications.

11.
Biochem Pharmacol ; 222: 116073, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395263

ABSTRACT

Stem cells from the apical papilla(SCAPs) exhibit remarkable tissue repair capabilities, demonstrate anti-inflammatory and pro-angiogenic effects, positioning them as promising assets in the realm of regenerative medicine. Recently, the focus has shifted towards exosomes derived from stem cells, perceived as safer alternatives while retaining comparable physiological functions. This study delves into the therapeutic implications of exosomes derived from SCAPs in the methionine-choline-deficient (MCD) diet-induced mice non-alcoholic steatohepatitis (NASH) model. We extracted exosomes from SCAPs. During the last two weeks of the MCD diet, mice were intravenously administered SCAPs-derived exosomes at two distinct concentrations (50 µg/mouse and 100 µg/mouse) biweekly. Thorough examinations of physiological and biochemical indicators were performed to meticulously evaluate the impact of exosomes derived from SCAPs on the advancement of NASH in mice induced by MCD diet. This findings revealed significant reductions in body weight loss and liver damage induced by the MCD diet following exosomes treatment. Moreover, hepatic fat accumulation was notably alleviated. Mechanistically, the treatment with exosomes led to an upregulation of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) levels in the liver, enhancing hepatic fatty acid oxidation and transporter gene expression while inhibiting genes associated with fatty acid synthesis. Additionally, exosomes treatment increased the transcription levels of key liver mitochondrial marker proteins and the essential mitochondrial biogenesis factor. Furthermore, the levels of serum inflammatory factors and hepatic tissue inflammatory factor mRNA expression were significantly reduced, likely due to the anti-inflammatory phenotype induced by exosomes in macrophages. The above conclusion suggests that SCAPs-exosomes can improve NASH.


Subject(s)
Choline Deficiency , Exosomes , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Methionine/metabolism , Choline/metabolism , Lipid Metabolism , Exosomes/metabolism , Choline Deficiency/complications , Choline Deficiency/drug therapy , Choline Deficiency/metabolism , Liver/metabolism , Inflammation/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Anti-Inflammatory Agents/pharmacology , Diet , Fatty Acids/metabolism , Mice, Inbred C57BL
12.
Environ Res ; 248: 118305, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38307183

ABSTRACT

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Subject(s)
Gastrointestinal Microbiome , Ileitis , Mice , Animals , Dysbiosis , Zebrafish/metabolism , Mice, Inbred C57BL , Liver , Fatty Acids/metabolism
14.
Chem Sci ; 15(8): 2954-2962, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38404390

ABSTRACT

Materials with two or more fluorescence features under different excitation sources have great potential in optical applications, but luminous materials with three emission characteristics have been largely undeveloped. Here, we report a novel zero-dimensional (0D) organic-inorganic hybrid ((C2H5)4N)2ZrCl6 perovskite with multiple emissions. The zirconium-based perovskite exhibits a red emission around 620 nm, a green emission at 527 nm, and a blue emission around 500 nm. The red and green emissions come from self-trapped excitons (STEs) and the d-d transitions of Zr(iv), respectively, which are caused by distortion of the [ZrCl6]2- octahedra. The blue emission is caused by thermally activated delayed fluorescence (TADF), which is similar to that of Cs2ZrCl6. The absolute photoluminescence quantum yield (PLQY) of the red and blue double emission is up to 83% and the PLQY of the green emission is 27%. With different combinations of ((C2H5)4N)2ZrCl6 samples, we achieve a variety of applications, including a two-color luminescent anti-counterfeiting device, a white light-emitting diode (WLED) with a color rendering index (CRI) of 95 and information encryption with different excitations. We also synthesize other hybrid zirconium perovskites with tri-luminescence through a similar method. Our work provides a potential set of excitation-dependent luminescent materials and is expected to expand the basic research and practical applications of multi-luminescence materials.

15.
Microbiol Res ; 280: 127588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163390

ABSTRACT

Fungi play a crucial role in decomposing litter and facilitating the energy flow between aboveground plants and underground soil in forest ecosystems. However, our understanding how the fungal community involved in litter decomposition responds during forest succession, particularly in disease-driven succession, is still limited. This study investigated the activity of degrading enzyme, fungal community, and predicted function in litter after one year of decomposition in different types of forests during a forest succession gradient from coniferous to deciduous forest, induced by pine wilt disease. The results showed that the weight loss of needles/leaves and twigs did not change along the succession process, but twigs degraded faster than needles/leaves in both pure pine forest and mixed forest. In pure pine forest, peak activities of enzymes involved in carbon degradation (ß-cellobiosidase, ß-glucosidase, ß-D-glucuronidase, ß-xylosidase), nitrogen degradation (N-acetyl-glucosamidase), and organic phosphorus degradation (phosphatase) were observed in needles, which subsequently declined. The fungal diversity and evenness (Shannon's diversity and Shannon's evenness) dropped in twig from coniferous forest to mixed forest during the succession. The dominant phyla in needle/leaf and twig litters were Ascomycota (46.9%) and Basidiomycota (38.9%), with Lambertella pruni and Chalara hughesii identified as the most abundant indicator species. Gymnopus and Desmazierella showed positively correlations with most measured enzyme activities. Functionally, saprotrophs constituted the main trophic mode (47.65%), followed by Pathotroph-Saprotroph-Symbiotroph (30.95%) and Saprotroph-Symbiotroph (10.57%). The fungal community and predicted functional structures in both litter types shifted among different forest types along the succession. These findings indicate that the fungal community in litter decomposition responds differently to disease-induced succession, leading to significant shifts in both the fungal community structure and function.


Subject(s)
Agaricales , Mycobiome , Pinus , Ecosystem , Fungi/metabolism , Forests , Soil/chemistry , Soil Microbiology
16.
Article in English | MEDLINE | ID: mdl-38194393

ABSTRACT

Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.


Subject(s)
Deep Brain Stimulation , Leptin , Mice , Animals , Leptin/metabolism , Body Weight , Obesity/therapy , Eating/physiology , Mice, Inbred C57BL
17.
Pharm Res ; 41(2): 281-291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172366

ABSTRACT

PURPOSES: Highly concentrated monoclonal antibody (mAb) formulations for subcutaneous administration are becoming increasingly preferred within the biopharmaceutical industry for ease of use and improved patient compliance. A common phenomenon observed in the industry is that osmolality detected via freezing-point depression (FPD) in high-concentration mAb formulations is much higher than the theoretical concentrations, yet the occurrence of this phenomenon and its possible safety issues have been rarely reported. METHODS: The current study summarized theoretical osmolality of U.S. Food and Drug Administration approved high-concentration mAb formulations and evaluated effects of high osmolality on safety using hemolysis experiments for the first time. Two mAbs formulated at 150 mg/mL were used as models and configured into two isotonic solutions: a, a theoretically calculated molarity in the isotonic range (H) and b, an osmolality value measured via the FPD in the isotonic range (I). The H and I formulations of each mAb were individually subjected to hemolysis experiments, and the hemolysis rates of the two formulations of the same mAb were compared. Besides, the effect of mAb concentration on osmolality detected by FPD was explored as well. RESULTS: The results indicated that the hemolysis rates were similar between the H and I formulations of mAbs at the same sample addition volume, and the osmolality values increased approximately linearly with the increase in mAb concentration. CONCLUSIONS: High osmolality for high-concentration mAb formulations would not affect product safety and the excipients could be added at relatively high levels to maintain product stability, especially for labile products.


Subject(s)
Antibodies, Monoclonal , Hemolysis , Humans , Drug Compounding , Excipients , Osmolar Concentration
18.
Seizure ; 116: 37-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36941137

ABSTRACT

PURPOSE: The FAT1 gene encodes FAT atypical cadherin 1, which is essential for foetal development, including brain development. This study aimed to investigate the relationship between FAT1 variants and epilepsy. METHODS: Trio-based whole-exome sequencing was performed on a cohort of 313 patients with epilepsy. Additional cases with FAT1 variants were collected from the China Epilepsy Gene V.1.0 Matching Platform. RESULTS: Four pairs of compound heterozygous missense FAT1 variants were identified in four unrelated patients with partial (focal) epilepsy and/or febrile seizures, but without intellectual disability/developmental abnormalities. These variants presented no/very low frequencies in the gnomAD database, and the aggregate frequencies in this cohort were significantly higher than those in controls. Two additional compound heterozygous missense variants were identified in two unrelated cases using the gene-matching platform. All patients experienced infrequent (yearly/monthly) complex partial seizures or secondary generalised tonic-clonic seizures. They responded well toantiseizure medication, but seizures relapsed in three cases when antiseizure medication were decreased or withdrawn after being seizure-free for three to six years, which correlated with the expression stage of FAT1. Genotype-phenotype analysis showed that epilepsy-associated FAT1 variants were missense, whereas non-epilepsy-associated variants were mainly truncated. The relationship between FAT1 and epilepsy was evaluated to be "Strong" by the Clinical Validity Framework of ClinGen. CONCLUSIONS: FAT1 is a potential causative gene of partial epilepsy and febrile seizures. Gene expression stage was suggested to be one of the considerations in determining the duration ofantiseizure medication. Genotype-phenotype correlation helps to explain the mechanisms underlying phenotypic variation.


Subject(s)
Epilepsies, Partial , Epilepsy , Seizures, Febrile , Humans , Anticonvulsants/therapeutic use , Seizures, Febrile/genetics , Seizures, Febrile/drug therapy , Epilepsies, Partial/drug therapy , Epilepsy/drug therapy , Recurrence , Gene Expression , Cadherins/genetics
19.
Seizure ; 116: 4-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37777370

ABSTRACT

PURPOSE: To provide an updated list of epilepsy-associated genes based on clinical-genetic evidence. METHODS: Epilepsy-associated genes were systematically searched and cross-checked from the OMIM, HGMD, and PubMed databases up to July 2023. To facilitate the reference for the epilepsy-associated genes that are potentially common in clinical practice, the epilepsy-associated genes were ranked by the mutation number in the HGMD database and by case number in the China Epilepsy Gene 1.0 project, which targeted common epilepsy. RESULTS: Based on the OMIM database, 1506 genes were identified to be associated with epilepsy and were classified into three categories according to their potential association with epilepsy or other abnormal phenotypes, including 168 epilepsy genes that were associated with epilepsies as pure or core symptoms, 364 genes that were associated with neurodevelopmental disorders as the main symptom and epilepsy, and 974 epilepsy-related genes that were associated with gross physical/systemic abnormalities accompanied by epilepsy/seizures. Among the epilepsy genes, 115 genes (68.5%) were associated with epileptic encephalopathy. After cross-checking with the HGMD and PubMed databases, an additional 1440 genes were listed as potential epilepsy-associated genes, of which 278 genes have been repeatedly identified variants in patients with epilepsy. The top 100 frequently reported/identified epilepsy-associated genes from the HGMD database and the China Epilepsy Gene 1.0 project were listed, among which 40 genes were identical in both sources. SIGNIFICANCE: Recognition of epilepsy-associated genes will facilitate genetic screening strategies and be helpful for precise molecular diagnosis and treatment of epilepsy in clinical practice.


Subject(s)
Epilepsy , Humans , Epilepsy/genetics , Seizures/genetics , Genetic Testing , Mutation/genetics , Databases, Factual , Phenotype
20.
Mov Disord ; 39(1): 152-163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38014483

ABSTRACT

BACKGROUND: Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES: The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS: Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS: Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS: Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Spastic Paraplegia, Hereditary , Zebrafish , Animals , Humans , Ubiquinone/genetics , Spastic Paraplegia, Hereditary/genetics , Mutation/genetics , Mutation, Missense , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...