Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Technol Health Care ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38073344

ABSTRACT

BACKGROUND: Despite the advancement of new screening strategies and the advances in pharmacological therapies, the cancerization rates of familial adenomatous polyposis (FAP) are stable and even increased in the last years. Therefore, it necessitates additional research to characterize and understand the underlying mechanisms of FAP. OBJECTIVE: To determine the genes that drive the pathogenesis of familial adenomatous polyposis (FAP). METHODS: We performed on a cohort (GSE111156) gene profile, which consist of four group of gene expressions (the gene expressions of cancer, adenoma and normal tissue of duodenal cancer from patients with FAP were defined as Case N, Case A and Case C respectively, while that of adenoma tissue from patients with FAP who did not have duodenal cancer was Ctrl A). Tracking Tumor Immunophenotype (TIP) website was applied to reveal immune infiltration profile and signature genes of FAP. We merged the genes of key module (pink and midnight module) with signature genes to obtained the biomarkers related with FAP pathogenesis. The expression of these five biomarkers in FAP intratumoral region (IT) and tumor rim (TR) was detected with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS: In total, 220, 23 and 63 DEGs were determined in Cases C, A and N, in comparison to Ctrl A. In total, 196 and 10 DEGs were determined in Cases C and A, separately, as compared to Case N. A total of four biomarkers including CCL5, CD3G, CD2 and TLR3 were finally identified associated with pink module, while only one biomarker (KLF2) associated with midnight module was identified. All biomarkers were evidently raised in FAP IT tissues utilizing qRT-PCR. CONCLUSION: We identified five potential biomarkers for pathogenesis of FAP to understand the fundamental mechanisms of FAP progression and revealed some probable targets for the diagnosis or treatment of FAP.

2.
PeerJ ; 11: e15261, 2023.
Article in English | MEDLINE | ID: mdl-37151285

ABSTRACT

The status of human epidermal growth factor receptor 2 (HER2) for the prognosis in colorectal cancer (CRC) is controversial, and the characteristics of the somatic mutation spectrum, tumor-infiltrating leukocytes, tertiary lymphoid structures and PD-L1 protein are unknown in HER2-amplified colorectal cancer (HACC). In order to explore these characteristics along with their correlation with clinicopathological factors and prognosis in HACC. Samples of 812 CRC patients was collected. After immunohistochemistry (IHC), 59 of 812 were found to be HER2-positive, then 26 of 59 samples were further determined to be HER2 amplification by fluorescence in situ hybridization (FISH). Somatic mutation profiling of HACC was analysed using whole exome sequencing (WES). Multiplex fluorescence immunohistochemistry (mIHC) was used for tumor-infiltrating leukocytes and tertiary lymphoid structures (TLSs), while PD-L1 protein was detected by IHC. Our results indicate that the detection rates of HER2 positivity by IHC and FISH were 7.3% and 3.2% respectively, and HER2 amplification is correlated with distant tumour metastasis. The somatic mutation profiling revealed no differences between HACC and HER2-negative CRC. However, TP 53 strongly correlated with poor prognosis in HACC. Furthermore, tumor-infiltrating T cells and TLSs in the tumor immune microenvironment, as well as PD-L1 expression, were higher in HACC than in HER2-negative controls. However, none of them were associated with the prognosis of HACC. In all, HER2 amplification is correlated with distant metastasis and TP53 gene mutation may be a potential protective mechanism of HACC.


Subject(s)
Colorectal Neoplasms , Tertiary Lymphoid Structures , Humans , B7-H1 Antigen/genetics , In Situ Hybridization, Fluorescence , Tertiary Lymphoid Structures/genetics , Colorectal Neoplasms/genetics , Mutation , Tumor Microenvironment
3.
Eur J Surg Oncol ; 48(1): 211-217, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34483031

ABSTRACT

BACKGROUND: Microsatellite instability, programmed death-ligand 1 and tumor-infiltrating leukocytes are prognostic biomarkers in colorectal cancer but unknown toward familial adenomatous polyposis. AIM: To investigate the prognostic and clinicopathological roles of microsatellite instability, programmed death-ligand 1 and tumor-infiltrating leukocytes in familial adenomatous polyposis. METHODS: Clinical data and paraffin embedded tissues from 45 familial adenomatous polyposis patients were collected. Microsatellite instability was detected by immunohistochemistry and polymerase chain reaction. Programmed death-ligand 1 was detected by immunohistochemistry. Tumor-infiltrating leukocytes comprising CD8+ T cells, M1 and M2 tumor associated macrophages, CD56bright and CD56dim natural killer cells were analyzed using multiple fluorescence immunohistochemistry. RESULTS: Microsatellite instability high was noted in 6 samples but not associated with overall survival or progression-free survival. Programmed death-ligand 1 is negative on tumor cells but positive on tumor-infiltrating leukocytes, and positive programmed death-ligand 1 expression on tumor-infiltrating leucocytes is associated with overall survival. Low CD56bright natural killer cell infiltration was associated with longer progression-free survival and was an independent prognostic factor in FAP. CONCLUSION: For familial adenomatous polyposis, microsatellite instability high can be found but has no correlation with prognosis; programmed death-ligand 1 on tumor-infiltrating leukocytes is related with overall survival; CD56bright natural killer cell is an independent prognostic factor associating with longer progression-free survival.


Subject(s)
Adenocarcinoma/genetics , Adenomatous Polyposis Coli/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Microsatellite Instability , Tumor-Associated Macrophages/metabolism , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenomatous Polyposis Coli/immunology , Adenomatous Polyposis Coli/metabolism , Adult , Aged , CD56 Antigen/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Female , Humans , Male , Middle Aged , Prognosis , Progression-Free Survival , Young Adult
4.
ACS Appl Mater Interfaces ; 13(24): 27784-27795, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34126740

ABSTRACT

Graphene quantum dots (GQDs) are emerging as a versatile nanomaterial with numerous proposed biomedical applications. Despite the explosion in potential applications, the molecular interactions between GQDs and complex biomolecular systems, including potassium-ion (K+) channels, remain largely unknown. Here, we use molecular dynamics (MD) simulations and electrophysiology to study the interactions between GQDs and three representative K+ channels, which participate in a variety of physiological processes and are closely related to many disease states. Using MD simulations, we observed that GQDs adopt distinct contact poses with each of the three structurally distinct K+ channels. Our electrophysiological characterization of the effects of GQDs on channel currents revealed that GQDs interact with the extracellular voltage-sensing domain (VSD) of a Kv1.2 channel, augmenting current by left-shifting the voltage dependence of channel activation. In contrast, GQDs form a "lid" cluster over the extracellular mouth of inward rectifier Kir3.2, blocking the channel pore and decreasing the current in a concentration-dependent manner. Meanwhile, GQDs accumulate on the extracellular "cap domain" of K2P2 channels and have no apparent impact on the K+ flux through the channel. These results reveal a surprising multifaceted regulation of K+ channels by GQDs, which might help de novo design of nanomaterial-based channel probe openers/inhibitors that can be used to further discern channel function.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Graphite/metabolism , Kv1.2 Potassium Channel/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Quantum Dots/metabolism , Animals , G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , Graphite/chemistry , HEK293 Cells , Humans , Kv1.2 Potassium Channel/chemistry , Mice , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain/chemistry , Protein Binding , Protein Domains , Quantum Dots/chemistry , Rats
5.
J Phys Chem B ; 125(14): 3476-3485, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33787269

ABSTRACT

Cyclotides are disulfide-rich cyclic peptides isolated from plants, which are extremely stable against thermal and proteolytic degradation, with a variety of biological activities including antibacterial, hemolytic, anti-HIV, and anti-tumor. Most of these bioactivities are related to their preference for binding to certain types of phospholipids and subsequently disrupt lipid membranes. In the present study, we use a cyclotide, cycloviolacin O2 (cyO2), as a model system to investigate its interactions with three lipid bilayers 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG)-doped POPE, and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), to help understand its potential mechanism of action toward the membranes at the molecular level using molecular dynamics simulations. In our simulations, cyO2 repeatedly forms stable binding complexes with the POPE-containing bilayers, while within the same simulation time scale, it "jumps" back and forth on the surface of the POPC bilayer without a strong binding. Detailed analyses reveal that the electrostatic attraction is the main driving force for the initial bindings between cyO2 and the lipids, but with strikingly different strengths in different bilayers. For the POPE-containing bilayers, the charged residues of cyO2 attract both POPE amino and phosphate head groups favorably; meanwhile, its hydrophobic residues are deeply inserted into the lipid hydrophobic tails (core) of the membrane, thus forming stable binding complexes. In contrast, POPC lipids with three methyl groups on the amino head group create a steric hindrance when interacting with cyO2, thus resulting in a relatively difficult binding of cyO2 on POPC compared to POPE. Our current findings provide additional insights for a better understanding of how cyO2 binds to the POPE-containing membrane, which should shed light on the future cyclotide-based antibacterial agent design.


Subject(s)
Molecular Dynamics Simulation , Phospholipids , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Peptides, Cyclic , Phosphatidylcholines
6.
Nanoscale ; 12(17): 9430-9439, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32313912

ABSTRACT

Phosphorene, a monolayer of black phosphorus, has emerged as one of the most promising two-dimensional (2D) nanomaterials for various applications in the post-graphene-discovery period due to its highly anisotropic structure and novel properties. In order to apply phosphorene in biomedical fields, it is crucial to understand how it interacts with biomolecules. Herein, we use both molecular dynamics (MD) simulations and experimental techniques to investigate the interactions of phosphorene with a dsDNA segment. Our results reveal that dsDNA can form a stable binding on the phosphorene surface through the terminal base pairs and adopt an upright orientation regardless of its initial configurations. Moreover, the binding strength of dsDNA with phosphorene is found to be mild and does not cause significant distortion in the internal structure of dsDNA. This phenomenon is attributed to the weaker dispersion interaction between dsDNA and phosphorene. Further analysis of the free energy profile calculated by the umbrella sampling technique suggests that the puckered surface morphology significantly reduces the adsorption free energy of DNA bases to phosphorene. Compared to graphene, phosphorene is found to show a milder attraction to DNA, which is confirmed by our electrophoresis experiments. We believe that these findings provide valuable insight into the molecular interactions between phosphorene and dsDNA which may prompt further investigation of phosphorene for future biomedical applications.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Phosphorus/chemistry , Adsorption , Base Pairing , Electrophoresis, Agar Gel , Entropy , Graphite/chemistry , Molecular Dynamics Simulation , Surface Properties , Water/chemistry
7.
Phys Chem Chem Phys ; 21(18): 9520-9530, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31020281

ABSTRACT

Despite significant interest in molybdenum disulfide (MoS2) nanomaterials, particularly in biomedicine, their biological effects have been understudied. Here, we explored the effect of MoS2 nanoflakes on the ubiquitous mitochondrial porin voltage-dependent anion channel (VDAC1), using a combined computational and functional approach. All-atomic molecular dynamics simulations suggest that MoS2 nanoflakes make specific contact interactions with human VDAC1. We show that the initial contacts between hVDAC1 and the nanoflake are hydrophobic but are subsequently enhanced by a complex interplay of van der Waals (vdW), hydrophobic and electrostatic interactions in the equilibrium state. Moreover, the MoS2 nanoflake can insert into the lumen of the hVDAC1 pore. Free-energy calculations computed by the potential of mean force (PMF) verify that the blocked configuration of the MoS2-hVDAC1 complex is more energetically favorable than the non-blocked binding mode. Consistent with these predictions, we showed that MoS2 depolarizes the mitochondrial membrane potential (Ψm) and causes a decrease in the viability of mammalian tissue culture cells. These findings might shed new light on the potential biological effect of MoS2 nanomaterials.

8.
Chem Sci ; 9(44): 8352-8362, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30542582

ABSTRACT

Phosphoinositides are essential signaling lipids that play a critical role in regulating ion channels, and their dysregulation often results in fatal diseases including cardiac arrhythmia and paralysis. Despite decades of intensive research, the underlying molecular mechanism of lipid agonism and specificity remains largely unknown. Here, we present a systematic study of the binding mechanism and specificity of a native agonist, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and two of its variants, PI(3,4)P2 and PI(3,4,5)P3, on inwardly rectifying potassium channel Kir2.2, using molecular dynamics simulations and free energy perturbations (FEPs). Our results demonstrate that the major driving force for the PI(4,5)P2 specificity on Kir2.2 comes from the highly organized salt-bridge network formed between the charged inositol head and phosphodiester linker of PI(4,5)P2. The unsaturated arachidonic chain is also shown to contribute to the stable binding through hydrophobic interactions with nearby Kir2.2 hydrophobic residues. Consistent with previous experimental findings, our FEP results confirmed that non-native ligands, PI(3,4)P2 and PI(3,4,5)P3, show significant loss in binding affinity as a result of the substantial shift from the native binding mode and unfavorable local solvation environment. However, surprisingly, the underlying molecular pictures for the unfavorable binding of both ligands are quite distinctive: for PI(3,4)P2, it is due to a direct destabilization in the bound state, whereas for PI(3,4,5)P3, it is due to a relative stabilization in its free state. Our findings not only provide a theoretical basis for the ligand specificity, but also generate new insights into the allosteric modulation of ligand-gated ion channels.

9.
J Mol Neurosci ; 66(2): 207-213, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30120716

ABSTRACT

The activity of sweet taste receptor (heterodimeric T1R2 and T1R3) can be modulated by sweet regulators. The compound amiloride can inhibit the sweet sensitivity of the human sweet taste receptor. This study describes the species-dependent regulation of the response of sweet taste receptors by this sweet inhibitor. Amiloride inhibited the sweet taste response of humans and mice but not that of squirrel monkeys. Using human/squirrel monkey/mouse chimeric T1R2 and T1R3 receptors as well as the agonist perillartine (which can activate the single heptahelical domain of T1R2), we found that the heptahelical domain of T1R2 is the molecular determinant that mediates the species-dependent sensitivity to this sweet regulator. Compared to the sweet inhibitor lactisole (which acts on T1R3), amiloride has a different allosteric binding site on the sweet receptor, which is important new information for the design of novel sweet taste modulators that act on T1R2.


Subject(s)
Allosteric Site , Amiloride/pharmacology , Receptors, G-Protein-Coupled/chemistry , Amiloride/chemistry , Animals , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Saimiri , Species Specificity
10.
ACS Nano ; 12(1): 705-717, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29236481

ABSTRACT

Molybdenum disulfide (MoS2) nanomaterial has recently found various applications in the biomedical field mainly due to its outstanding physicochemical properties. However, little is known about its interactions with biological systems at the atomic level, which intimately relates to the biocompatibility of the material. To provide insights into the effects of MoS2 in biological entities, we investigated the interactions of MoS2 with proteins from a functionally important membrane family, the ubiquitous potassium (K+) channels. Here, we study four representative K+ channels-KcsA, Kir3.2, the Kv1.2 paddle chimera, and K2P2-to investigate their interactions with a triangular MoS2 nanoflake using Molecular Dynamics (MD) simulations combined with electrophysiology experiments. These particular K+ channels were selected based on the diversity in their structure; that is, although these K+ channels display similar structural motifs, they also contain significant differences related to their particular function. Our results indicate that the MoS2 nanoflake is able to stably bind to three out of the four channels, albeit through distinct binding modes. The binding mode between each channel and MoS2 underlies the specific deleterious influence on the channel's basic physiological function: For KcsA, MoS2 binds on the extracellular loops, which indirectly destroys the delicate structure of the selectivity filter causing a strong leak of K+ ions. In the binding mode with Kir3.2, the MoS2 nanoflake completely covers the entrance to the channel pore affecting the normal ion conduction. For the Kv1.2 chimera, the MoS2 nanoflake prefers to bind into a crevice located at the extracellular side of the Voltage Sensor Domain (VSD). Interestingly, the crevice involves the N-terminal segment of S4, a crucial transmembrane helix which directly controls the gating process of the Kv1.2 chimera channel by electromechanical coupling the VSD to the transmembrane electric field. MoS2 in contact with S4 from the Kv1.2 chimera, potentially influences the channel's gating process from open to closed states. In all three systems, the van der Waals contribution to the total energy dominates the binding interactions; also, hydrophobic residues contribute the most contact points, which agrees with the strong hydrophobic character of the MoS2 nanomaterial. Electrophysiology recordings using two-electrode voltage-clamp show that currents of Kir3.2 and Kv1.2 are both blocked by the MoS2 nanoflakes in a concentration-dependent way. While the background K+ channel, K2P2 (TREK-1), identified as a negative control, is not blocked by the MoS2 nanoflakes. The large and rigid extracellular domain of K2P2 appears to protect the channel from disturbance by the nanoflakes. Intrinsic chemical properties of MoS2, together with the specific features of the channels, such as the electrostatic character and complex surface architecture, determine the critical details of the binding events. These findings might shed light on the potential nanotoxicology of MoS2 nanomaterials and help us to understand the underlying molecular mechanism.

11.
Sci Rep ; 6: 37761, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883086

ABSTRACT

Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form "water bridges" between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials.


Subject(s)
Amino Acids/chemistry , Metal Nanoparticles/chemistry , Solutions/chemistry , Titanium/chemistry , Water/chemistry , Molecular Dynamics Simulation
12.
Sci Rep ; 6: 29399, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27439597

ABSTRACT

Inwardly rectifying K(+) (Kir) channels, serving as natural molecular nanomachines, transport potassium ions across the plasma membrane of the cell. Along the ion permeation pathway, three relatively narrow regions (the selectivity filter (SF), the inner helix bundle crossing (HBC), and the cytosolic G loop) may serve as gates to control ion permeation. Our previous molecular dynamics simulations based on the crystal structure of a Kir3.1 chimera revealed the possible gating mechanism of the G loop gate. Here, we introduced a proline mutation in the inner helix and obtained a channel model of the open HBC gate. The open HBC gate reaches 0.6 nm in diameter, which allows partial hydrated K(+) ions to pass through. During the gating process, both the transmembrane helices TM1 and TM2 cooperatively rotate in a counterclockwise direction (viewed from the extracellular side) with the aid of the phospholipid PIP2. Only when all the transmembrane helices adopt a counterclockwise rotation, the HBC gate can be stabilized in the open state. We estimate that introduction of the proline mutation decreases the energy required to open the HBC gate by about 1.4 kcal/mol (ΔΔG).


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Cell Membrane/metabolism , Crystallography, X-Ray , Escherichia coli/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Ions , Magnetospirillum/metabolism , Molecular Dynamics Simulation , Motion , Mutation , Phospholipids/chemistry , Potassium/chemistry , Principal Component Analysis , Protein Binding , Protein Domains , Rotation , Thermodynamics
13.
Sci Rep ; 6: 22128, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26899177

ABSTRACT

As a major effective component in green tea, (-)-epigallocatechin-3-gallate (EGCG)'s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG.


Subject(s)
Catechin/analogs & derivatives , HMGB1 Protein/chemistry , Molecular Conformation/drug effects , Tea/chemistry , Binding Sites , Catechin/chemistry , Catechin/pharmacology , Cysteine/chemistry , Cysteine/metabolism , HMGB1 Protein/metabolism , Humans , Molecular Dynamics Simulation , Molecular Structure , Protein Aggregates/drug effects , Protein Aggregation, Pathological , Protein Binding , Protein Domains/drug effects , Protein Multimerization/drug effects , Static Electricity
14.
J Neurosci ; 35(42): 14397-405, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26490875

ABSTRACT

Inwardly rectifying potassium channels enforce tight control of resting membrane potential in excitable cells. The Kir3.2 channel, a member of the Kir3 subfamily of G-protein-activated potassium channels (GIRKs), plays several roles in the nervous system, including key responsibility in the GABAB pathway of inhibition, in pain perception pathways via opioid receptors, and is also involved in alcoholism. PKC phosphorylation acts on the channel to reduce activity, yet the mechanism is incompletely understood. Using the heterologous Xenopus oocyte system combined with molecular dynamics simulations, we show that PKC modulation of channel activity is dependent on Ser-196 in Kir3.2 such that, when this site is phosphorylated, the channel is less sensitive to PKC inhibition. This reduced inhibition is dependent on an interaction between phospho-Ser (SEP)-196 and Arg-201, reducing Arg-201 interaction with the sodium-binding site Asp-228. Neutralization of either SEP-196 or Arg-201 leads to a channel with reduced activity and increased sensitivity to PKC inhibition. This study clarifies the role of Ser-196 as an allosteric modulator of PKC inhibition and suggests that the SEP-196/Arg-201 interaction is critical for maintaining maximal channel activity. SIGNIFICANCE STATEMENT: The inwardly rectifying potassium 3.2 (Kir3.2) channel is found principally in neurons that regulate diverse brain functions, including pain perception, alcoholism, and substance addiction. Activation or inhibition of this channel leads to changes in neuronal firing and chemical message transmission. The Kir3.2 channel is subject to regulation by intracellular signals including sodium, G-proteins, ethanol, the phospholipid phosphatidylinositol bis-phosphate, and phosphorylation by protein kinases. Here, we take advantage of the recently published structure of Kir3.2 to provide an in-depth molecular view of how phosphorylation of a specific residue previously thought to be the target of PKC promotes channel gating and acts as an allosteric modulator of PKC-mediated inhibition.


Subject(s)
Biophysical Phenomena/physiology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Ion Channel Gating/genetics , Membrane Potentials/physiology , Animals , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Electric Stimulation , Enzyme Inhibitors/pharmacology , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Potentials/drug effects , Microinjections , Models, Molecular , Oocytes , Patch-Clamp Techniques , Phorbol 12,13-Dibutyrate/pharmacology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphorylation , Point Mutation/genetics , Protein Kinase C/metabolism , Serine/genetics , Xenopus laevis
15.
Int Rev Neurobiol ; 123: 1-26, 2015.
Article in English | MEDLINE | ID: mdl-26422981

ABSTRACT

The question that started with the pioneering work of Otto Loewi in the 1920s, to identify how stimulation of the vagus nerve decreased heart rate, is approaching its 100th year anniversary. In the meantime, we have learned that the neurotransmitter acetylcholine acting through muscarinic M2 receptors activates cardiac potassium (Kir3) channels via the ßγ subunits of G proteins, an important effect that contributes to slowing atrial pacemaker activity. Concurrent stimulation of M1 or M3 receptors hydrolyzes PIP2, a signaling phospholipid essential to maintaining Kir3 channel activity, thus causing desensitization of channel activity and protecting the heart from overinhibition of pacemaker activity. Four mammalian members of the Kir3 subfamily, expressed in heart, brain, endocrine organs, etc., are modulated by a plethora of stimuli to regulate cellular excitability. With the recent great advances in ion channel structural biology, three-dimensional structures of Kir3 channels with PIP2 and the Gßγ subunits are now available. Mechanistic insights have emerged that explain how modulatory control of activity feeds into a core mechanism of channel-PIP2 interactions to regulate the conformation of channel gates. This complex but beautiful system continues to surprise us for almost 100 years with an apparent wisdom in its intricate design.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , GTP-Binding Proteins/metabolism , Phosphatidylinositols/metabolism , Animals , Signal Transduction
16.
Sci Adv ; 1(6): e1500008, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26366439

ABSTRACT

Phosphatidylinositol 4,5-bisphosphate (PIP2) directly interacts with the small-conductance Ca2+-activated K+ 2-a (SK2-a) channel/calmodulin complex, serving as a critical element in the regulation of channel activity. We report that changes of protein conformation in close proximity to the PIP2 binding site induced by a small-molecule SK channel modulator, NS309, can effectively enhance the interaction between the protein and PIP2 to potentiate channel activity. This novel modulation of PIP2 sensitivity by small-molecule drugs is likely not to be limited in its application to SK channels, representing an intriguing strategy to develop drugs controlling the activity of the large number of PIP2-dependent proteins.

17.
Annu Rev Physiol ; 77: 81-104, 2015.
Article in English | MEDLINE | ID: mdl-25293526

ABSTRACT

Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca(2+)]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states.


Subject(s)
Ion Channels/physiology , Membrane Proteins/physiology , Phosphatidylinositols/physiology , Animals , Cell Membrane/physiology , Humans , Phosphorylation/physiology , Signal Transduction/physiology
18.
Curr Pharm Biotechnol ; 15(10): 996-1006, 2014.
Article in English | MEDLINE | ID: mdl-25307013

ABSTRACT

Growing experimental evidences suggest that dimerization and oligomerization are important for G Protein- Coupled Receptors (GPCRs) function. The detailed structural information of dimeric/oligomeric GPCRs would be very important to understand their function. Although it is encouraging that recently several experimental GPCR structures in oligomeric forms have appeared, experimental determination of GPCR structures in oligomeric forms is still a big challenge, especially in mimicking the membrane environment. Therefore, development of computational approaches to predict dimerization of GPCRs will be highly valuable. In this review, we summarize computational approaches that have been developed and used for modeling of GPCR dimerization. In addition, we introduce a novel two-dimensional Brownian Dynamics based protein docking approach, which we have recently adapted, for GPCR dimer prediction.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Animals , Computational Biology , Models, Molecular , Protein Multimerization
19.
Nat Chem Biol ; 10(9): 753-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108821

ABSTRACT

Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conductance Ca2+-activated potassium channels (SKs) by Ca(2+)-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SKs. The PIP2-binding site resides at the interface of CaM and the SK C terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by casein kinase 2 reduces the affinity of PIP2 for the CaM-SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G protein-mediated hydrolysis of PIP2.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Phosphatidylinositol Phosphates/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Acetylcholine/pharmacology , Amino Acids/metabolism , Binding Sites , Casein Kinase II/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/pharmacology , HEK293 Cells , Humans , Models, Molecular , Phosphatidylinositol Phosphates/physiology , Phosphorylation , Protein Conformation , Protein Kinase C/metabolism
20.
J Biol Chem ; 289(27): 18860-72, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24778177

ABSTRACT

Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca(2+)). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca(2+)-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel's activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca(2+) and PIP2 in regulating BK channel activity. In the absence of Ca(2+), RCK1 structural elements limit channel activation through a decrease in the channel's PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca(2+) coordination site (Asp(367) or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys(392) and Arg(393)) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca(2+), the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca(2+) engaging Asp(367). Our results demonstrate that, along with Ca(2+) and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.


Subject(s)
Calcium/metabolism , Kv1.1 Potassium Channel/chemistry , Kv1.1 Potassium Channel/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/chemistry , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Allosteric Regulation , Amino Acid Sequence , Animals , Binding Sites , Cell Membrane/metabolism , Cytosol/metabolism , Ion Channel Gating , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mice , Molecular Docking Simulation , Molecular Sequence Data , Mutagenesis , Mutation , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...