Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(8): 539, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604811

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Ferroptosis , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Ferroptosis/genetics , Histones/genetics , Lysine , Kidney Neoplasms/genetics , Histone Methyltransferases
3.
Mol Carcinog ; 62(4): 464-478, 2023 04.
Article in English | MEDLINE | ID: mdl-36585906

ABSTRACT

RBM4 has been reported as a tumor suppressor gene in cancers, including lung cancer, colon cancer and gastric cancer. However, the role of RBM4 in clear cell renal cell carcinoma (ccRCC) remains unclear. Therefore, the present study investigated the expression and biological function of RBM4 in ccRCC. Analysis of the differential expression of RBM4 and its relationship with clinicopathological features using ccRCC samples data from TCGA database deminstrated that RBM4 expression in tumor samples of ccRCC was lower than that in normal samples, and RBM4 expression was closely related to the survival time of patients. RBM4 overexpression (RBM4-oe) cell lines were constructed to investigate the effect of RBM4 on biological function using CCK-8, EdU, flow cytometry and wound-healing assays. In addition, the regulatory effect of RBM4 on signaling pathways was investigated by GSEA and WB assays. RBM4-oe significantly reduced the proliferation of ccRCC cells by controlling the p53 signaling pathway, inhibited cell cycle progression and promoted apoptosis. In addition, RBM4-oe suppressed the migration and invasion of cells by EMT. Mechanistically, RBM4-oe facilitated the activity of the p53 signaling pathway by enhancing the stability of p53 mRNA. Finally, RBM4-oe markedly inhibited the growth of tumors formed with 786-O cells in vivo. In summary, there findings suggeated that RBM4 inhibits the progression of ccRCC by promoting p53 signaling pathway activity by enhancing the stability of p53 mRNA, suggesting that RBM4 may be a potential target for the treatment of patients.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Tumor Suppressor Protein p53/genetics , RNA, Messenger/genetics , Cell Proliferation/genetics , Kidney Neoplasms/pathology , Cell Line, Tumor , RNA-Binding Proteins/genetics
4.
Transl Oncol ; 26: 101550, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183674

ABSTRACT

BACKGROUND: F-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC. METHODS: Comprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts. RESULTS: A risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6. CONCLUSIONS: FBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.

5.
Sci Rep ; 12(1): 10973, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768519

ABSTRACT

Renal cell carcinoma (RCC) is a kidney cancer that is originated from the lined proximal convoluted tubule, and its major histological subtype is clear cell RCC (ccRCC). This study aimed to retrospectively analyze single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, to explore the correlation among the evolution of tumor microenvironment (TME), clinical outcomes, and potential immunotherapeutic responses in combination with bulk RNA-seq data from The Cancer Genome Atlas (TCGA) database, and to construct a differentiation-related genes (DRG)-based prognostic risk signature (PRS) and a nomogram to predict the prognosis of ccRCC patients. First, scRNA-seq data of ccRCC samples were systematically analyzed, and three subsets with distinct differentiation trajectories were identified. Then, ccRCC samples from TCGA database were divided into four DRG-based molecular subtypes, and it was revealed that the molecular subtypes were significantly correlated with prognosis, clinicopathological features, TME, and the expression levels of immune checkpoint genes (ICGs). A DRG-based PRS was constructed, and it was an independent prognostic factor, which could well predict the prognosis of ccRCC patients. Finally, we constructed a prognostic nomogram based on the PRS and clinicopathological characteristics, which exhibited a high accuracy and a robust predictive performance. This study highlighted the significance of trajectory differentiation of ccRCC cells and TME evolution in predicting clinical outcomes and potential immunotherapeutic responses of ccRCC patients, and the nomogram provided an intuitive and accurate method for predicting the prognosis of such patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/pathology , Nomograms , Prognosis , RNA-Seq , Retrospective Studies , Tumor Microenvironment/genetics
6.
Front Immunol ; 13: 1080403, 2022.
Article in English | MEDLINE | ID: mdl-36591240

ABSTRACT

Background: Previous studies have identified MYBL1 as a cancer-promoting molecule in numerous types of cancer. Nevertheless, the role of MYBL in renal cancer remains unclear. Methods: Genomic and clinical data of clear cell renal cell carcinoma (ccRCC) was get from the Cancer Genome Atlas (TCGA) database. CCK8, colony formation, and 5-ethynyl-2'-deoxyuridine assay were utilized to evaluate the performance of cell proliferation. Cell apoptosis was detected using the flow cytometric analysis. The protein level of MYBL1 in different tissues was evaluated using immunohistochemistry. A machine learning algorithm was utilized to identify the prognosis signature based on MYBL1-derived molecules. Results: Here, we comprehensively investigated the role of MYBL1 in ccRCC. Here, we noticed a higher level of MYBL1 in ccRCC patients in both RNA and protein levels. Further analysis showed that MYBL1 was correlated with progressive clinical characteristics and worse prognosis performance. Biological enrichment analysis showed that MYBL1 can activate multiple oncogenic pathways in ccRCC. Moreover, we found that MYBL1 can remodel the immune microenvironment of ccRCC and affect the immunotherapy response. In vitro and in vivo assays indicated that MYBL1 was upregulated in ccRCC cells and can promote cellular malignant behaviors of ccRCC. Ultimately, an machine learning algorithm - LASSO logistics regression was utilized to identify a prognosis signature based on the MYBL1-derived molecules, which showed satisfactory prediction ability on patient prognosis in both training and validation cohorts. Conclusions: Our result indicated that MYBL1 is a novel biomarker of ccRCC, which can remodel the tumor microenvironment, affect immunotherapy response and guide precision medicine in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tumor Microenvironment , Humans , Algorithms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/therapy , Proto-Oncogene Proteins , Trans-Activators , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology
7.
ACS Appl Mater Interfaces ; 13(44): 52374-52384, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34714617

ABSTRACT

Bladder cancer (BCa) is the most costly solid tumor owing to its high recurrence. Relapsed cancer is known to acquire chemoresistant features after standard intravesical chemotherapy. This cancer state is vulnerable to ferroptosis, which occurs when lipid peroxides generated by iron metabolism accumulate to lethal levels. Increasing the labile iron pool (LIP) by iron oxide nanoparticles (IONPs) promises to inhibit chemoresistant BCa (CRBCa), but systemically administered IONPs do not sufficiently accumulate at the tumor site. Therefore, their efficacy is weakened. Here, we present a three-tier delivery strategy through a mucoadhesive hydrogel platform conveying hyaluronic acid-coated IONPs (IONP-HA). When instilled, the hydrogel platform first adhered to the interface of the tumor surface, sustainably releasing IONP-HA. Subsequently, the tumor stiffness and interstitial fluid pressure were reduced by photothermal therapy, promoting IONP-HA diffusion into the deep cancer tissue. As CRBCa expressed high levels of CD44, the last delivery tier was achieved through antibody-mediated endocytosis to increase the LIP, ultimately inducing ferroptosis. This three-tiered strategy delivered the IONPs stepwise from anatomical to cellular levels and increased the iron content by up to 50-fold from that of systematic administration, which presents a potential regimen for CRBCa.

8.
Mol Cancer ; 18(1): 15, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670025

ABSTRACT

BACKGROUND: The long noncoding RNA (lncRNA) OTUD6B antisense RNA 1 (OTUD6B-AS1) is oriented in an antisense direction to the protein-coding gene OTUD6B on the opposite DNA strand. TCGA database data show that the expression of the lncRNA OTUD6B-AS1 is downregulated and that OTUD6B-AS1 acts as an antioncogene in a variety of tumors. However, the expression and biological functions of the lncRNA OTUD6B-AS1 are still unknown in tumors, including clear cell renal cell carcinoma (ccRCC). METHODS: The expression level of OTUD6B-AS1 was measured in 75 paired human ccRCC tissue and corresponding adjacent normal renal tissue samples. The correlations between the OTUD6B-AS1 expression level and clinicopathological features were evaluated using the chi-square test. The effects of OTUD6B-AS1 on ccRCC cells were determined via MTT assay, clone formation assay, transwell assay, and flow cytometry. Furthermore, the impact of OTUD6B-AS1 overexpression on the activation of the Wnt/ß-catenin signaling pathway was investigated. Finally, ACHN cells with OTUD6B-AS1 overexpression were subcutaneously injected into nude mice to evaluate the influence of OTUD6B-AS1 on tumor growth in vivo. RESULTS: In this study, we found that the expression of the lncRNA OTUD6B-AS1 was downregulated in ccRCC tissue samples and that patients with low OTUD6B-AS1 expression had shorter overall survival than patients with high OTUD6B-AS1 expression, which showed that the different expression level of OTUD6B-AS1 indirectly correlated with survival of patients. Lentivirus-mediated OTUD6B-AS1 overexpression significantly decreased the proliferation of ccRCC cells and promoted the apoptosis of the cells. Furthermore, OTUD6B-AS1 overexpression partly inhibited cell migration and invasion. The overexpression of OTUD6B-AS1 decreased the activity of the Wnt/ß-catenin pathway and suppressed the expression of epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Snail) in ccRCC cells. In addition, compared with the parental ACHN cells, OTUD6B-AS1-overexpressing ACHN cells injected into nude mice exhibited decreased tumor growth in vivo. CONCLUSIONS: Taken together, our findings present a road map for targeting the newly identified lncRNA OTUD6B-AS1 to suppress ccRCC progression in cell lines, and these results elucidate a novel potential therapeutic target for ccRCC treatment.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , RNA, Long Noncoding/genetics , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Mice, Nude , Prognosis
9.
J Cancer ; 9(24): 4618-4626, 2018.
Article in English | MEDLINE | ID: mdl-30588245

ABSTRACT

Background: This study investigated the biological function of the gene MAN1C1 α-mannosidase in renal cell carcinoma. It has been reported that MAN1C1 is probably a potential tumor suppressor gene in Wilms. However, the role of MAN1C1 in human clear cell renal cell carcinoma (ccRCC) has not been reported. Methods: In this study, MAN1C1 gene over-expression was used to transfect human renal cancer cell lines 786-O and OS-RC-2 to study apoptosis and the underlying mechanisms which influence epithelial-mesenchymal transition. Results: MAN1C1 was down-regulated in ccRCC and related to the clinicopathological factors and prognosis of ccRCC. We revealed that over-expression MAN1C1 showed anti-tumor effect by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8) assay, cell cycle analysis, and western blot analysis. What's more, MAN1C1 over-expression remarkably increased the ratio of Bax/Bcl-2 and inhibited epithelial-mesenchymal transition by increasing the expression of E-CA. In addition, the ratio of Bax/Bcl-2 and E-CA were also increased in MAN1C1 gene over-expression renal cancer cells compared with the control cells. Conclusion: We find that re-expression of silenced MAN1C1 in ccRCC cell lines inhibited cell viability, colony formation, induced apoptosis, suppressed cell invasion and migration. In conclusion, MAN1C1 is a novel functional tumor suppressor in renal carcinogenesis. This is the first time that the function of MAN1C1 gene has been verified in the renal tumor tissue so far.

SELECTION OF CITATIONS
SEARCH DETAIL
...