Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 9(5): e0122223, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564711

ABSTRACT

Rapid and accurate sequencing of the entire viral genome, coupled with continuous monitoring of genetic changes, is crucial for understanding the epidemiology of coronaviruses. We designed a novel method called micro target hybrid capture system (MT-Capture) to enable whole-genome sequencing in a timely manner. The novel design of probes used in target binding exhibits a unique and synergistic "hand-in-hand" conjugation effect. The entire hybrid capture process is within 2.5 hours, overcoming the time-consuming and complex operation characteristics of the traditional liquid-phase hybrid capture (T-Capture) system. By designing specific probes for these coronaviruses, MT-Capture effectively enriched isolated strains and 112 clinical samples of coronaviruses with cycle threshold values below 37. Compared to multiplex PCR sequencing, it does not require frequent primer updates and has higher compatibility. MT-Capture is highly sensitive and capable of tracking variants.IMPORTANCEMT-Capture is meticulously designed to enable the efficient acquisition of the target genome of the common human coronavirus. Coronavirus is a kind of virus that people are generally susceptible to and is epidemic and infectious, and it is the virus with the longest genome among known RNA viruses. Therefore, common human coronavirus samples are selected to evaluate the accuracy and sensitivity of MT-Capture. This method utilizes innovative probe designs optimized through probe conjugation techniques, greatly shortening the time and simplifying the handwork compared with traditional hybridization capture processes. Our results demonstrate that MT-Capture surpasses multiplex PCR in terms of sensitivity, exhibiting a thousandfold increase. Moreover, MT-Capture excels in the identification of mutation sites. This method not only is used to target the coronaviruses but also may be used to diagnose other diseases, including various infectious diseases, genetic diseases, or tumors.


Subject(s)
Genome, Viral , Whole Genome Sequencing , Humans , Genome, Viral/genetics , Whole Genome Sequencing/methods , Coronavirus/genetics , Coronavirus/isolation & purification , SARS-CoV-2/genetics
2.
Front Microbiol ; 13: 973367, 2022.
Article in English | MEDLINE | ID: mdl-36312982

ABSTRACT

Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy. The combination of the newly launched nanopore sequencing Q20+ kit (LSK112) and flow cell R10.4 is a qualitative improvement over the accuracy of the previous kits. In this study, we firstly used LSK112 kit with flow cell R10.4 to sequence the SARS-CoV-2 whole genome, and summarized the sequencing results of the combination of LSK112 kit and flow cell R10.4 for the 1200bp amplicons of SARS-CoV-2. We found that the proportion of sequences with an accuracy of more than 99% reached 30.1%, and the average sequence accuracy reached 98.34%, while the results of the original combination of LSK109 kit and flow cell R9.4.1 were 0.61% and 96.52%, respectively. The mutation site analysis showed that it was completely consistent with the final consensus sequence of next generation sequencing (NGS). The results showed that the combination of LSK112 kit and flow cell R10.4 allowed rapid whole-genome sequencing of SARS-CoV-2 without the need for verification of NGS.

3.
Front Microbiol ; 13: 1095739, 2022.
Article in English | MEDLINE | ID: mdl-36590420

ABSTRACT

[This corrects the article DOI: 10.3389/fmicb.2022.973367.].

SELECTION OF CITATIONS
SEARCH DETAIL