ABSTRACT
PURPOSE: Despite the generally favourable prognoses observed in patients with ALK-positive non-small cell lung cancer (NSCLC), there remains significant variability in clinical outcomes. The objective of this study is to enhance patient stratification by examining both the specific sites of gene fusion and the presence of co-occurring mutations. METHODS: We collected retrospective clinical and pathological data on ALK-positive patients with locally advanced or metastatic disease. ALK fusion variants and concomitant mutations were identified through next-generation sequencing technology. We then assessed treatment efficacy via tumor response and survival metrics. RESULTS: This study included a total of 59 patients, with 49 harboring echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusions and 10 presenting with rare fusions. The median follow-up period was 33 months. Clinical outcomes between non-EML4-ALK and EML4-ALK patients were comparable. Among the EML4-ALK cohort, patients with longer variants (v1, v2, v8) demonstrated superior progression-free survival (PFS) (median PFS: 34 months vs. 11 months; hazard ratio [HR]: 2.28; P = 0.05) compared to those with shorter variants (v3, v5). Furthermore, patients treated with second-generation ALK inhibitors (ALKi) displayed a progression-free survival advantage (median PFS: not reached [NR] vs. 9 months; HR: 5.37; P = 0.013). Baseline TP53 co-mutation were linked with a substantially shorter OS (median OS,37 months vs. NR; HR 2.74; P = 0.047). CONCLUSIONS: In ALK+ NSCLC, longer EML4-ALK variants correlate with improved prognosis and enhanced response to second-generation ALKi, while TP53 co-mutations indicate a negative prognosis.
Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Oncogene Proteins, Fusion , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , Female , Middle Aged , Anaplastic Lymphoma Kinase/genetics , Retrospective Studies , Aged , Adult , Oncogene Proteins, Fusion/genetics , Tumor Suppressor Protein p53/genetics , Progression-Free Survival , Prognosis , China , East Asian PeopleABSTRACT
PURPOSE: This study aimed to identify the impact of epidermal growth factor receptor (EGFR) T790M mutations on clinical characteristics and prognosis. METHODS: Retrospective analyses were conducted on the differences on clinicopathological features and prognosis between primary and acquired T790M mutations. Subgroup analyses were performed for primary T790M coexisting with other mutations. RESULTS: Patients with primary T790M mutations showed a 60.53% (23/38) incidence of concurrent L858R mutations, 18.42% (7/38) for 19del mutations and a 21.05% (8/38) occurrence of brain metastases. Conversely, those with acquired T790M mutations demonstrated respective frequencies of 36.53% (61/167), 58.68% (98/167) and 44.31% (74/167), with all comparisons yielding p < 0.05. The median overall survival differed significantly between the two groups, with a duration of 33 months for patients with primary T790M mutations as compared to 48 months for those with acquired mutations (p = 0.030). Notably, among patients with L858R co-mutations, when treated with third-generation EGFR-TKIs, those with acquired T790M mutations experienced a significantly prolonged median time to treatment failure compared to those with primary mutations (17 months vs. 9 months, p = 0.009). CONCLUSION: Patients with primary T790M have unique molecular features and had worse prognosis compared with acquired T790M. Resistance to third-generation EGFR-TKIs seems to be associated with the presence of EGFR co-mutations.