Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(5): 2534-2541, 2018 03.
Article in English | MEDLINE | ID: mdl-29531674

ABSTRACT

Many ectotherms show a decrease in body size with increasing latitude due to changes in climate, a pattern termed converse Bergmann's rule. Urban conditions-particularly warmer temperatures and fragmented landscapes-may impose stresses on development that could disrupt these body size patterns. To test the impact of urbanization on development and latitudinal trends in body size, we launched a citizen science project to collect periodical cicadas (Magicicada septendecim) from across their latitudinal range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects whose distribution spans a broad latitudinal range covering both urban and rural habitats. We used a geometric morphometric approach to assess body size and developmental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas followed converse Bergmann's rule, but this pattern was disrupted in urban habitats. In the north, urban cicadas were larger than their rural counterparts, while southern populations showed little variation in body size between habitats. We detected no evidence of differences in developmental stress due to urbanization. To our knowledge, this is the first evidence that urbanization disrupts biogeographical trends in body size, and this pattern highlights how the effects of urbanization may differ over a species' range.

2.
Ecology ; 99(2): 322-334, 2018 02.
Article in English | MEDLINE | ID: mdl-29160898

ABSTRACT

Geographic range size can span orders of magnitude for plant and animal species, with the study of why range sizes vary having preoccupied biogeographers for decades. In contrast, there have been few comparable studies of how range size varies across microbial taxa and what traits may be associated with this variation. We determined the range sizes of 74,134 bacterial and archaeal taxa found in settled dust collected from 1,065 locations across the United States. We found that most microorganisms have small ranges and few have large ranges, a pattern similar to the range size distributions commonly observed for macrobes. However, contrary to expectations, those microbial taxa that were locally abundant did not necessarily have larger range sizes. The observed differences in microbial range sizes were generally predictable from taxonomic identity, phenotypic traits, genomic attributes, and habitat preferences, findings that provide insight into the factors shaping patterns of microbial biogeography.


Subject(s)
Archaea , Bacteria/classification , Animals , Ecosystem , Plants
3.
Mol Ecol ; 25(24): 6214-6224, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27801965

ABSTRACT

We spend most of our lives inside homes, surrounded by arthropods that impact our property as pests and our health as disease vectors and producers of sensitizing allergens. Despite their relevance to human health and well-being, we know relatively little about the arthropods that exist in our homes and the factors structuring their diversity. As previous work has been limited in scale by the costs and time associated with collecting arthropods and the subsequent morphological identification, we used a DNA-based method for investigating the arthropod diversity in homes via high-throughput marker gene sequencing of home dust. Settled dust samples were collected by citizen scientists from both inside and outside more than 700 homes across the United States, yielding the first continental-scale estimates of arthropod diversity associated with our residences. We were able to document food webs and previously unknown geographic distributions of diverse arthropods - from allergen producers to invasive species and nuisance pests. Home characteristics, including the presence of basements, home occupants and surrounding land use, were more useful than climate parameters in predicting arthropod diversity in homes. These noninvasive, scalable tools and resultant findings not only provide the first continental-scale maps of household arthropod diversity, but our analyses also provide valuable baseline information on arthropod allergen exposures and the distributions of invasive pests inside homes.


Subject(s)
Arthropods/classification , Dust/analysis , Housing , Allergens , Animals , DNA/analysis , Food Chain , United States
4.
PeerJ ; 4: e1605, 2016.
Article in English | MEDLINE | ID: mdl-26855863

ABSTRACT

An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria. The human armpit has long been noted to host a high biomass bacterial community, and recent studies have highlighted substantial inter-individual variation in armpit bacteria, even relative to variation among individuals for other body habitats. One obvious potential explanation for this variation has to do with the use of personal hygiene products, particularly deodorants and antiperspirants. Here we experimentally manipulate product use to examine the abundance, species richness, and composition of bacterial communities that recolonize the armpits of people with different product use habits. In doing so, we find that when deodorant and antiperspirant use were stopped, culturable bacterial density increased and approached that found on individuals who regularly do not use any product. In addition, when antiperspirants were subsequently applied, bacterial density dramatically declined. These culture-based results are in line with sequence-based comparisons of the effects of long-term product use on bacterial species richness and composition. Sequence-based analyses suggested that individuals who habitually use antiperspirant tended to have a greater richness of bacterial OTUs in their armpits than those who use deodorant. In addition, individuals who used antiperspirants or deodorants long-term, but who stopped using product for two or more days as part of this study, had armpit communities dominated by Staphylococcaceae, whereas those of individuals in our study who habitually used no products were dominated by Corynebacterium. Collectively these results suggest a strong effect of product use on the bacterial composition of armpits. Although stopping the use of deodorant and antiperspirant similarly favors presence of Staphylococcaceae over Corynebacterium, their differential modes of action exert strikingly different effects on the richness of other bacteria living in armpit communities.

5.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26311665

ABSTRACT

We spend the majority of our lives indoors; yet, we currently lack a comprehensive understanding of how the microbial communities found in homes vary across broad geographical regions and what factors are most important in shaping the types of microorganisms found inside homes. Here, we investigated the fungal and bacterial communities found in settled dust collected from inside and outside approximately 1200 homes located across the continental US, homes that represent a broad range of home designs and span many climatic zones. Indoor and outdoor dust samples harboured distinct microbial communities, but these differences were larger for bacteria than for fungi with most indoor fungi originating outside the home. Indoor fungal communities and the distribution of potential allergens varied predictably across climate and geographical regions; where you live determines what fungi live with you inside your home. By contrast, bacterial communities in indoor dust were more strongly influenced by the number and types of occupants living in the homes. In particular, the female : male ratio and whether a house had pets had a significant influence on the types of bacteria found inside our homes highlighting that who you live with determines what bacteria are found inside your home.


Subject(s)
Bacteria/isolation & purification , Dust , Fungi/isolation & purification , Housing , Allergens/isolation & purification , Animals , Bacteria/classification , Family Characteristics , Female , Fungi/classification , Geography , Humans , Male , Pets , United States
6.
Proc Natl Acad Sci U S A ; 112(18): 5756-61, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25902536

ABSTRACT

It has been known for centuries that microorganisms are ubiquitous in the atmosphere, where they are capable of long-distance dispersal. Likewise, it is well-established that these airborne bacteria and fungi can have myriad effects on human health, as well as the health of plants and livestock. However, we have a limited understanding of how these airborne communities vary across different geographic regions or the factors that structure the geographic patterns of near-surface microbes across large spatial scales. We collected dust samples from the external surfaces of ∼1,200 households located across the United States to understand the continental-scale distributions of bacteria and fungi in the near-surface atmosphere. The microbial communities were highly variable in composition across the United States, but the geographic patterns could be explained by climatic and soil variables, with coastal regions of the United States sharing similar airborne microbial communities. Although people living in more urbanized areas were not found to be exposed to distinct outdoor air microbial communities compared with those living in more rural areas, our results do suggest that urbanization leads to homogenization of the airborne microbiota, with more urban communities exhibiting less continental-scale geographic variability than more rural areas. These results provide our first insight into the continental-scale distributions of airborne microbes, which is information that could be used to identify likely associations between microbial exposures in outdoor air and incidences of disease in crops, livestock, and humans.


Subject(s)
Allergens/analysis , Bacteria/isolation & purification , Dust/analysis , Fungi/isolation & purification , Aerosols , Air Microbiology , Animals , Atmosphere/chemistry , Biodiversity , Cities , Environmental Monitoring/methods , Feces , Geography , Humans , Multivariate Analysis , Oceans and Seas , Seasons , Skin/microbiology , Soil Microbiology , United States , Water Microbiology , Wind
7.
PLoS One ; 10(4): e0122605, 2015.
Article in English | MEDLINE | ID: mdl-25875229

ABSTRACT

There is a long history of archaeologists and forensic scientists using pollen found in a dust sample to identify its geographic origin or history. Such palynological approaches have important limitations as they require time-consuming identification of pollen grains, a priori knowledge of plant species distributions, and a sufficient diversity of pollen types to permit spatial or temporal identification. We demonstrate an alternative approach based on DNA sequencing analyses of the fungal diversity found in dust samples. Using nearly 1,000 dust samples collected from across the continental U.S., our analyses identify up to 40,000 fungal taxa from these samples, many of which exhibit a high degree of geographic endemism. We develop a statistical learning algorithm via discriminant analysis that exploits this geographic endemicity in the fungal diversity to correctly identify samples to within a few hundred kilometers of their geographic origin with high probability. In addition, our statistical approach provides a measure of certainty for each prediction, in contrast with current palynology methods that are almost always based on expert opinion and devoid of statistical inference. Fungal taxa found in dust samples can therefore be used to identify the origin of that dust and, more importantly, we can quantify our degree of certainty that a sample originated in a particular place. This work opens up a new approach to forensic biology that could be used by scientists to identify the origin of dust or soil samples found on objects, clothing, or archaeological artifacts.


Subject(s)
Dust , Fungi/genetics , Genetic Variation , Pollen/genetics , Archaeology , Fungi/classification , Pollen/microbiology
8.
PeerJ ; 2: e523, 2014.
Article in English | MEDLINE | ID: mdl-25210654

ABSTRACT

Despite the rapid expansion of the built environment, we know little about the biology of species living in human-constructed habitats. Camel crickets (Rhaphidophoridae) are commonly observed in North American houses and include a range of native taxa as well as the Asian Diestrammena asynamora (Adelung), a species occasionally reported from houses though considered to be established only in greenhouses. We launched a continental-scale citizen science campaign to better understand the relative distributions and frequency of native and nonnative camel crickets in human homes across North America. Participants contributed survey data about the presence or absence of camel crickets in homes, as well as photographs and specimens of camel crickets allowing us to identify the major genera and/or species in and around houses. Together, these data offer insight into the geographical distribution of camel crickets as a presence in homes, as well as the relative frequency and distribution of native and nonnative camel crickets encountered in houses. In so doing, we show that the exotic Diestrammena asynamora not only has become a common presence in eastern houses, but is found in these environments far more frequently than native camel crickets. Supplemental pitfall trapping along transects in 10 urban yards in Raleigh, NC revealed that D. asynamora can be extremely abundant locally around some homes, with as many as 52 individuals collected from pitfalls in a single yard over two days of sampling. The number of D. asynamora individuals present in a trap was negatively correlated with the trap's distance from a house, suggesting that these insects may be preferentially associated with houses but also are present outside. In addition, we report the establishment in the northeastern United States of a second exotic species, putatively Diestrammena japanica Blatchley, which was previously undocumented in the literature. Our results offer new insight into the relative frequency and distribution of camel crickets living in human homes, and emphasize the importance of the built environment as habitat for two little-known invading species of Orthoptera.

9.
PLoS One ; 8(5): e64133, 2013.
Article in English | MEDLINE | ID: mdl-23717552

ABSTRACT

Most of our time is spent indoors where we are exposed to a wide array of different microorganisms living on surfaces and in the air of our homes. Despite their ubiquity and abundance, we have a limited understanding of the microbial diversity found within homes and how the composition and diversity of microbial communities change across different locations within the home. Here we examined the diversity of bacterial communities found in nine distinct locations within each of forty homes in the Raleigh-Durham area of North Carolina, USA, using high-throughput sequencing of the bacterial 16S rRNA gene. We found that each of the sampled locations harbored bacterial communities that were distinct from one another with surfaces that are regularly cleaned typically harboring lower levels of diversity than surfaces that are cleaned infrequently. These location-specific differences in bacterial communities could be directly related to usage patterns and differences in the likely sources of bacteria dispersed onto these locations. Finally, we examined whether the variability across homes in bacterial diversity could be attributed to outdoor environmental factors, indoor habitat structure, or the occupants of the home. We found that the presence of dogs had a significant effect on bacterial community composition in multiple locations within homes as the homes occupied by dogs harbored more diverse communities and higher relative abundances of dog-associated bacterial taxa. Furthermore, we found a significant correlation between the types of bacteria deposited on surfaces outside the home and those found inside the home, highlighting that microbes from outside the home can have a direct effect on the microbial communities living on surfaces within our homes. Together this work provides the first comprehensive analysis of the microbial communities found in the home and the factors that shape the structure of these communities both within and between homes.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Residence Characteristics , Bacteria/classification , Bacteria/genetics , Genes, Bacterial , High-Throughput Nucleotide Sequencing , North Carolina , Polymerase Chain Reaction , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...