Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 13(1): 21656, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38065980

ABSTRACT

We compared circulating miRNA profiles of hospitalized COVID-positive patients (n = 104), 27 with acute respiratory distress syndrome (ARDS) and age- and sex-matched healthy controls (n = 18) to identify miRNA signatures associated with COVID and COVID-induced ARDS. Meta-analysis incorporating data from published studies and our data was performed to identify a set of differentially expressed miRNAs in (1) COVID-positive patients versus healthy controls as well as (2) severe (ARDS+) COVID vs moderate COVID. Gene ontology enrichment analysis of the genes these miRNAs interact with identified terms associated with immune response, such as interferon and interleukin signaling, as well as viral genome activities associated with COVID disease and severity. Additionally, we observed downregulation of a cluster of miRNAs located on chromosome 14 (14q32) among all COVID patients. To predict COVID disease and severity, we developed machine learning models that achieved AUC scores between 0.81-0.93 for predicting disease, and between 0.71-0.81 for predicting severity, even across diverse studies with different sample types (plasma versus serum), collection methods, and library preparations. Our findings provide network and top miRNA feature insights into COVID disease progression and contribute to the development of tools for disease prognosis and management.


Subject(s)
COVID-19 , Circulating MicroRNA , Respiratory Distress Syndrome , Humans , COVID-19/genetics , Disease Progression , Prognosis , Respiratory Distress Syndrome/genetics , Male , Female
2.
Cytotherapy ; 25(2): 120-124, 2023 02.
Article in English | MEDLINE | ID: mdl-36274007

ABSTRACT

BACKGROUND AIMS: We evaluated a commercially available instrument, OCTiCell (chromologic.com/octicell), for monitoring cell growth in suspended agitated bioreactors based on optical coherence tomography. OCTiCell is an in-line, completely non-invasive instrument that can operate on any suspended-cell bioreactor with a window or transparent wall. In traditional optical coherence tomography, the imaging beam is rastered over the sample to form a three-dimensional image. OCTiCell, instead uses a fixed imaging beam and takes advantage of the motion of the media to move the cells across the interrogating optical beam. RESULTS: We found strong correlations between the non-invasive, non-contact, reagent-free OCTiCell measurements of cell concentration and viability and those obtained from the automated cell counter, and the XTT viability assay, which is a colorimetric assay for quantifying metabolic activity. CONCLUSIONS: This novel cell monitoring method can adapt to different bioreactor form factors and could reduce the labor cost and contamination risks associated with cell growth monitoring.


Subject(s)
Bioreactors , Tomography, Optical Coherence , Tomography, Optical Coherence/methods
3.
Sci Rep ; 12(1): 12333, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853961

ABSTRACT

In a mass radiation exposure, the healthcare system may rely on differential expression of miRNA to determine exposure and effectively allocate resources. To this end, miRNome analysis was performed on non-human primate serum after whole thorax photon beam irradiation of 9.8 or 10.7 Gy with dose rate 600 cGy/min. Serum was collected up to 270 days after irradiation and sequenced to determine immediate and delayed effects on miRNA expression. Elastic net based GLM methods were used to develop models that predicted the dose vs. controls at 81% accuracy at Day 15. A three-group model at Day 9 achieved 71% accuracy in determining if an animal would die in less than 90 days, between 90 and 269 days, or survive the length of the study. At Day 21, we achieved 100% accuracy in determining whether an animal would later develop pleural effusion. These results demonstrate the potential ability of miRNAs to determine thorax partial-body irradiation dose and forecast survival or complications early following whole thorax irradiation in large animal models. Future experiments incorporating additional doses and independent animal cohorts are warranted to validate these results. Development of a serum miRNA assay will facilitate the administration of medical countermeasures to increase survival and limit normal tissue damage following a mass exposure.


Subject(s)
MicroRNAs , Radiation Exposure , Animals , Biomarkers , Dose-Response Relationship, Radiation , Macaca mulatta , MicroRNAs/genetics , Radiation Exposure/analysis , Whole-Body Irradiation/adverse effects
4.
Neurotrauma Rep ; 3(1): 158-167, 2022.
Article in English | MEDLINE | ID: mdl-35403102

ABSTRACT

Severe traumatic brain injury (TBI), such as that suffered by patients with cerebral contusion, is a major cause of death and disability in young persons. Effective therapeutics to treat or mitigate the effects of severe TBI are lacking, in part because drug delivery to the injured brain remains a challenge. Promising therapeutics targeting secondary injury mechanisms may have poor pharmacokinetics/pharmacodynamics, unwanted side effects, or high hydrophobicity. To address these challenges, we have developed a multi-lamellar vesicle nanoparticle (MLV-NP) formulation with a narrow size distribution (243 nm in diameter, 0.09 polydispersity index) and the capability of encapsulating hydrophobic small molecule drugs for delivery to the injured brain. To demonstrate the utility of these particles, we produced dual-fluorescent labeled nanoparticles containing the organic dyes, coumarin 153 and rhodamine B, that were delivered intravenously to Sprague-Dawley rats and C57Bl6/J mice at 1, 1 and 4, 24, or 48 h after controlled cortical impact injury. Distribution of particles was measured at 5, 25, 48, or 49 h post-injury by fluorescence microscopy of coronal brain sections. In all cases of MLV administration, a 1.2- to 1.9-fold enhancement of ipsilateral fluorescence signal was observed compared to the contralateral cortex. Enhanced fluorescence was also observed in the injured hippocampal tissue in these animals. MLV-NPs administered at 1 h were observed intracellularly in the injured hemisphere at 48 h, suggesting the possibility of concentrated drug delivery to injured cells. These results suggest that MLV-NP delivery of therapeutic agents may be a viable strategy for treating cerebral contusion TBI.

5.
Am J Respir Cell Mol Biol ; 66(5): 497-509, 2022 05.
Article in English | MEDLINE | ID: mdl-35167418

ABSTRACT

The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-ß, TSP1 (thrombospondin-1), NOX4, IL-1ß, and NRF2; 3) plasma eNAMPT and IL-1ß concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Alarmins/metabolism , Animals , Antibodies, Monoclonal , Cytokines/metabolism , Lung/pathology , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Thorax , Toll-Like Receptor 4/metabolism
6.
Radiat Res ; 196(5): 547-559, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34525208

ABSTRACT

A radiological/nuclear (RAD-NUC) incident, especially in an urban setting, results in diverse radiation-induced injuries due to heterogeneities in dose, the extent of partial-body shielding, human biodiversity and pre-existing health conditions. For example, acute radiation syndrome (ARS) can result in death within days to weeks of exposure to 0.7-10 Gy doses and is associated with destruction of the bone marrow, known as hematopoietic ARS (H-ARS). However, partial-body shielding that spares a portion of the bone marrow from exposure can significantly reduce the occurrence of H-ARS, but delayed effects of acute radiation exposure (DEARE) can still occur within months or years after exposure depending on the individual. In a mass casualty event, ideal triage must be able to pre-symptomatically identify individuals likely to develop radiation-induced injuries and provide an appropriate treatment plan. Today, while there are FDA approved treatments for hematopoietic ARS, there are no approved diagnosis for radiation injury and no approved treatments for the broad spectra of injuries associated with radiation. This has resulted in a major capability gap in the nations preparedness to a potentially catastrophic RAD-NUC event. Circulating microRNA (miRNA) are a promising class of biomarkers for this application because the molecules are accessible via a routine blood draw and are excreted by various tissues throughout the body. To test if miRNA can be used to predict distinct tissue-specific radiation-induced injuries, we compared the changes to the circulating miRNA profiles after total-body irradiation (TBI) and whole thorax lung irradiation (WTLI) in non-human primates at doses designed to induce ARS (day 2 postirradiation; 2-6.5 Gy) and DEARE (day 15 postirradiation; 9.8 or 10.7 Gy), respectively. In both models, miRNA sequences were identified that correlated with the onset of severe neutropenia (counts <500 µL-1; TBI) or survival (WTLI). This method identified panels of eleven miRNA for both model and assigned functional roles for the panel members using gene ontology enrichment analysis. A common signature of radiation-induced injury was observed in both models: apoptosis, DNA damage repair, p53 signaling, pro-inflammatory response, and growth factor/cytokine signaling pathways were predicted to be disrupted. In addition, injury-specific pathways were identified. In TBI, pathways associated with ubiquitination, specifically of histone H2A, were enriched, suggesting more impact to DNA damage repair mechanisms and apoptosis. In WTLI, pro-fibrotic pathways including transforming growth factor (TGF-ß) and bone morphogenetic protein (BMP) signaling pathways were enriched, consistent with the onset of late lung injury. These results suggest that miRNA may indeed be able to predict the onset of distinct types of radiation-induced injuries.


Subject(s)
Acute Radiation Syndrome , Animals , Circulating MicroRNA , Macaca mulatta , Male , Radiation Injuries, Experimental
7.
Radiat Res ; 196(5): 510-522, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33857299

ABSTRACT

Thoracic exposure to ionizing radiation can lead to delayed injuries to the heart and lung that are serious and even life-threatening. These injuries are difficult to predict since they manifest over many weeks and months. To identify noninvasive, tissue-specific biomarkers for the early detection of late radiation injury, circulating microRNA (miRNA) levels were measured in non-human primates (NHP, Macaca mulatta) that received a single exposure of whole-thorax lung irradiation (WTLI) at a dose likely to result in 20% or 75% mortality within 180 days (9.8 or 10.7 Gy). Animals were observed for 270 days after WTLI. Approximately 58% of 9.8 Gy WTLI animals (7 of 12) and 94% of 10.7 Gy WTLI animals (15 out of 16) did not survive to the primary end point. Evidence of pulmonary fibrosis/pneumonitis was observed in all animals. Animals that received 10.7 Gy WTLI experienced more severe and early-onset pneumonitis, as indicated by reduced aerated lung volume, high non-sedated respiratory rate, earlier and more frequent dexamethasone treatments, and evidence of onset of heart disease. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days postirradiation, before the manifestation of symptoms, and included miRNA sequences known to regulate pathways associated with pulmonary fibrosis (TGF-ß/SMAD signaling) and pneumonitis/inflammation (p53 signaling). The abundance of several circulating miRNA differentially expressed at day 6 or 15, such as miR-199a-3p and miR-25-3p, correlated with statistically significant differences in survival. This study supports the hypothesis that it is feasible to use plasma miRNA profiles to identify individuals at high risk of organ-specific late radiation injury. These miRNA profiles could improve radiation oncology clinical practice and serve as biomarkers to predict who might develop late complications in the aftermath of a radiological or nuclear (RAD-NUC) incident.


Subject(s)
Radiation Pneumonitis , Animals , Dose-Response Relationship, Radiation , Lung Injury , Macaca mulatta , Male , MicroRNAs , Pulmonary Fibrosis , Radiation Injuries, Experimental
8.
PLoS One ; 15(5): e0232411, 2020.
Article in English | MEDLINE | ID: mdl-32392259

ABSTRACT

Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-ß/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.


Subject(s)
MicroRNAs/genetics , Radiation Injuries, Experimental/genetics , Radiation Pneumonitis/genetics , Animals , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Female , Heart/radiation effects , Humans , Lung/metabolism , Lung/radiation effects , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , MicroRNAs/blood , MicroRNAs/metabolism , Myocardium/metabolism , Proportional Hazards Models , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/metabolism , Radiation Pneumonitis/blood , Radiation Pneumonitis/metabolism , Species Specificity , Tissue Distribution
9.
PLoS One ; 11(12): e0167333, 2016.
Article in English | MEDLINE | ID: mdl-27907140

ABSTRACT

Development of biomarkers capable of estimating absorbed dose is critical for effective triage of affected individuals after radiological events. Levels of cell-free circulating miRNAs in plasma were compared for dose-response analysis in non-human primates (NHP) exposed to lethal (6.5 Gy) and sub-lethal (1 and 3 Gy) doses over a 7 day period. The doses and test time points were selected to mimic triage needs in the event of a mass casualty radiological event. Changes in miRNA abundance in irradiated animals were compared to a non-irradiated cohort and a cohort experiencing acute inflammation response from exposure to lipopolysaccharide (LPS). An amplification-free, hybridization-based direct digital counting method was used for evaluation of changes in microRNAs in plasma from all animals. Consistent with previous murine studies, circulating levels of miR-150-5p exhibited a dose- and time-dependent decrease in plasma. Furthermore, plasma miR-150-5p levels were found to correlate well with lymphocyte and neutrophil depletion kinetics. Additionally, plasma levels of several other evolutionarily and functionally conserved miRNAs were found altered as a function of dose and time. Interestingly, miR-574-5p exhibited a distinct, dose-dependent increase 24 h post irradiation in NHPs with lethal versus sub-lethal exposure before returning to the baseline level by day 3. This particular miRNA response was not detected in previous murine studies but was observed in animals exposed to LPS, indicating distinct molecular and inflammatory responses. Furthermore, an increase in low-abundant miR-126, miR-144, and miR-21 as well as high-abundant miR-1-3p and miR-206 was observed in irradiated animals on day 3 and/or day 7. The data from this study could be used to develop a multi-marker panel with known tissue-specific origin that could be used for developing rapid assays for dose assessment and evaluation of radiation injury on multiple organs. Furthermore this approach may be utilized to screen for tissue toxicity in patients who receive myeloablative and therapeutic radiation.


Subject(s)
Biomarkers/blood , Inflammation/blood , MicroRNAs/blood , Radiation Injuries/blood , Radiotherapy/adverse effects , Animals , Dose-Response Relationship, Radiation , Feasibility Studies , Female , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Organ Specificity/radiation effects , Primates , Radiation Injuries/pathology , Radiation Injuries/radiotherapy , Triage
10.
Transl Vis Sci Technol ; 4(6): 7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26688778

ABSTRACT

PURPOSE: Existing flare photometers are based on the Tyndall effect, which requires sophisticated laser photometry. The ocular flare analysis meter (OFAM) is a nonlaser photometer that uses quantitative Rayleigh scatter and absorption from visible light to compute a flare value. This study is designed to correlate OFAM measurements with qualitative measurements of flare in vitro and in vivo. METHODS: Following validation of the device on artificial anterior chambers containing known protein concentrations, flare readings were obtained from 90 subjects (46 with and 44 without uveitis) in one eye. Subjects were graded by the Standardization of Uveitis Nomenclature (SUN) working group flare scoring system and received the OFAM flare measurements. RESULTS: The OFAM showed linear response in vitro to protein concentrations ranging from 0 to 0.5 mg/ml. In clinical use in subjects ranging from SUN flare scores of 0+ to 2+, OFAM showed statistically significant measurement accuracy (P = 0.0008 of flare 0 versus flare 2; P = 0.031 of flare 0 versus flare 1). Distinction of SUN scores 1 and 2 was borderline significant (P = 0.057). CONCLUSION: The OFAM photometry correlates with the standard SUN scoring system. This method may provide an objective method to diagnosis and monitor uveitis. Further longitudinal studies are warranted. TRANSLATIONAL RELEVANCE: Currently, ocular flare is assessed qualitatively in most clinical settings. The existing methodology uses only Tyndall effect to measure flare. The OFAM uses an alternate, nonlaser means for measurement of anterior chamber flare by measure of Raleigh scatter. This pilot clinical study suggests that the OFAM device may be useful in measurement of uveitis activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...