Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
medRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562892

ABSTRACT

COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.

2.
J Am Soc Nephrol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656806

ABSTRACT

BACKGROUND: The severity of chronic histopathologic lesions on kidney biopsy is independently associated with higher risk of progressive chronic kidney disease (CKD). Because kidney biopsies are invasive, identification of blood markers that report on underlying kidney histopathology has the potential to enhance CKD care. METHODS: We examined the association between 6592 plasma protein levels measured by aptamers and the severity of interstitial fibrosis and tubular atrophy (IFTA), glomerulosclerosis, arteriolar sclerosis, and arterial sclerosis among 434 participants of the Boston Kidney Biopsy Cohort. For proteins significantly associated with at least one histologic lesion, we assessed renal arteriovenous protein gradients among 21 individuals who had undergone invasive catheterization and assessed the expression of the cognate gene among 47 individuals with single cell RNA sequencing data in the Kidney Precision Medicine Project. RESULTS: In models adjusted for estimated glomerular filtration rate (eGFR), proteinuria, and demographic factors, we identified 35 proteins associated with one or more chronic histologic lesions, including 20 specific for IFTA, 8 specific for glomerulosclerosis, and 1 specific for arteriolar sclerosis. In general, higher levels of these proteins were associated with more severe histologic score and lower eGFR. Exceptions included testican-2 and NELL1, which were associated with less glomerulosclerosis and IFTA, respectively, and higher eGFR; notably, both of these proteins demonstrated significantly higher levels from artery to renal vein, demonstrating net kidney release. In the Kidney Precision Medicine Project, 13 of the 35 protein hits had cognate gene expression enriched in one or more cell types in the kidney, including podocyte expression of select glomerulosclerosis markers (including testican-2) and tubular expression of several IFTA markers (including NELL1). CONCLUSIONS: Proteomic analysis identified circulating proteins associated with chronic histopathologic lesions, some of which have concordant site-specific expression within the kidney.

3.
Kidney Int ; 105(2): 312-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977366

ABSTRACT

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , PAX2 Transcription Factor , PAX8 Transcription Factor , Renal Insufficiency, Chronic , Animals , Female , Mice , Acute Kidney Injury/complications , Acute Kidney Injury/genetics , Ischemia/complications , Kidney Tubules, Proximal/pathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Reperfusion Injury/genetics , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/metabolism , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism
4.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873377

ABSTRACT

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. In this report, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI. We found that Pax2 and Pax8 are upregulated after severe AKI and correlate with chronic injury. Surprisingly, we then discovered that proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to preconditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of S3 proximal tubule cells that display features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic preconditioning, and female sex. Taken together, our results identify a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both injury response and protection from ischemic AKI. TRANSLATIONAL STATEMENT: Identifying the molecular and genetic regulators unique to the nephron that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are two homologous nephron-specific transcription factors that are critical for kidney development and physiology. Here we report that proximal-tubule-selective depletion of Pax2 and Pax8 protects against both acute and chronic injury and induces an expression profile in the S3 proximal tubule with common features shared among diverse conditions that protect against ischemia. These findings highlight a new role for Pax proteins as potential therapeutic targets to treat AKI.

5.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37616058

ABSTRACT

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Animals , Mice , Diabetic Nephropathies/pathology , Adenine , Diabetes Mellitus, Experimental/complications , Kidney/metabolism , Biomarkers , TOR Serine-Threonine Kinases
6.
Kidney Int ; 104(4): 828-839, 2023 10.
Article in English | MEDLINE | ID: mdl-37543256

ABSTRACT

Underlying molecular mechanisms of the kidney protective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors are not fully elucidated. Therefore, we studied the association between urinary epidermal growth factor (uEGF), a mitogenic factor involved in kidney repair, and kidney outcomes in patients with type 2 diabetes (T2D). The underlying molecular mechanisms of the SGLT2 inhibitor canagliflozin on EGF using single-cell RNA sequencing from kidney tissue were examined. Urinary EGF-to-creatinine ratio (uEGF/Cr) was measured in 3521 CANagliflozin cardioVascular Assessment Study (CANVAS) participants at baseline and week 52. Associations of uEGF/Cr with kidney outcome were assessed using multivariable-adjusted Cox regression models. Single-cell RNA sequencing was performed using protocol kidney biopsy tissue from ten young patients with T2D on SGLT2i, six patients with T2D on standard care only, and six healthy controls (HCs). In CANVAS, each doubling in baseline uEGF/Cr was associated with a 12% (95% confidence interval 1-22) decreased risk of kidney outcome. uEGF/Cr decreased after 52 weeks with placebo and remained stable with canagliflozin (between-group difference +7.3% (2.0-12.8). In young persons with T2D, EGF mRNA was primarily expressed in the thick ascending loop of Henle. Expression in biopsies from T2D without SGLT2i was significantly lower compared to HCs, whereas treatment with SGLT2i increased EGF levels closer to the healthy state. In young persons with T2D without SGLT2i, endothelin-1 emerged as a key regulator of the EGF co-expression network. SGLT2i treatment was associated with a shift towards normal EGF expression. Thus, decreased uEGF represents increased risk of kidney disease progression in patients with T2D. Canagliflozin increased kidney tissue expression of EGF and was associated with a downstream signaling cascade linked to tubular repair and reversal of tubular injury.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Type 2/complications , Epidermal Growth Factor/genetics , Glucose , Sodium/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
7.
Nat Commun ; 14(1): 4903, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580326

ABSTRACT

Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease.


Subject(s)
Kidney Diseases , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Kidney , Kidney Diseases/genetics , Kidney Diseases/metabolism , Organoids/metabolism
8.
medRxiv ; 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37398187

ABSTRACT

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

9.
medRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37398386

ABSTRACT

Arteriolar hyalinosis in kidneys is an independent predictor of cardiovascular disease, the main cause of mortality in chronic kidney disease (CKD). The underlying molecular mechanisms of protein accumulation in the subendothelial space are not well understood. Using single cell transcriptomic data and whole slide images from kidney biopsies of patients with CKD and acute kidney injury in the Kidney Precision Medicine Project, the molecular signals associated with arteriolar hyalinosis were evaluated. Co-expression network analysis of the endothelial genes yielded three gene set modules as significantly associated with arteriolar hyalinosis. Pathway analysis of these modules showed enrichment of transforming growth factor beta / bone morphogenetic protein (TGFß / BMP) and vascular endothelial growth factor (VEGF) signaling pathways in the endothelial cell signatures. Ligand-receptor analysis identified multiple integrins and cell adhesion receptors as over-expressed in arteriolar hyalinosis, suggesting a potential role of integrin-mediated TGFß signaling. Further analysis of arteriolar hyalinosis associated endothelial module genes identified focal segmental glomerular sclerosis as an enriched term. On validation in gene expression profiles from the Nephrotic Syndrome Study Network cohort, one of the three modules was significantly associated with the composite endpoint (> 40% reduction in estimated glomerular filtration rate (eGFR) or kidney failure) independent of age, sex, race, and baseline eGFR, suggesting poor prognosis with elevated expression of genes in this module. Thus, integration of structural and single cell molecular features yielded biologically relevant gene sets, signaling pathways and ligand-receptor interactions, underlying arteriolar hyalinosis and putative targets for therapeutic intervention.

10.
Nature ; 619(7970): 585-594, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468583

ABSTRACT

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Subject(s)
Gene Expression Profiling , Kidney Diseases , Kidney , Single-Cell Analysis , Transcriptome , Humans , Cell Nucleus/genetics , Kidney/cytology , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Transcriptome/genetics , Case-Control Studies , Imaging, Three-Dimensional
12.
J Clin Invest ; 133(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36637914

ABSTRACT

The molecular mechanisms of sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) remain incompletely understood. Single-cell RNA sequencing and morphometric data were collected from research kidney biopsies donated by young persons with type 2 diabetes (T2D), aged 12 to 21 years, and healthy controls (HCs). Participants with T2D were obese and had higher estimated glomerular filtration rates and mesangial and glomerular volumes than HCs. Ten T2D participants had been prescribed SGLT2i (T2Di[+]) and 6 not (T2Di[-]). Transcriptional profiles showed SGLT2 expression exclusively in the proximal tubular (PT) cluster with highest expression in T2Di(-) patients. However, transcriptional alterations with SGLT2i treatment were seen across nephron segments, particularly in the distal nephron. SGLT2i treatment was associated with suppression of transcripts in the glycolysis, gluconeogenesis, and tricarboxylic acid cycle pathways in PT, but had the opposite effect in thick ascending limb. Transcripts in the energy-sensitive mTORC1-signaling pathway returned toward HC levels in all tubular segments in T2Di(+), consistent with a diabetes mouse model treated with SGLT2i. Decreased levels of phosphorylated S6 protein in proximal and distal tubules in T2Di(+) patients confirmed changes in mTORC1 pathway activity. We propose that SGLT2i treatment benefits the kidneys by mitigating diabetes-induced metabolic perturbations via suppression of mTORC1 signaling in kidney tubules.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Kidney/metabolism , Kidney Glomerulus/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Humans , Child , Adolescent , Young Adult , Mechanistic Target of Rapamycin Complex 1
13.
Kidney Int ; 102(6): 1345-1358, 2022 12.
Article in English | MEDLINE | ID: mdl-36055599

ABSTRACT

Hyperfiltration is a state of high glomerular filtration rate (GFR) observed in early diabetes that damages glomeruli, resulting in an iterative process of increasing filtration load on fewer and fewer remaining functional glomeruli. To delineate underlying cellular mechanisms of damage associated with hyperfiltration, transcriptional profiles of kidney biopsies from Pima Indians with type 2 diabetes with or without early-stage diabetic kidney disease were grouped into two hyperfiltration categories based on annual iothalamate GFR measurements. Twenty-six participants with a peak GFR measurement within two years of biopsy were categorized as the hyperfiltration group, and 26 in whom biopsy preceded peak GFR by over two years were considered pre-hyperfiltration. The hyperfiltration group had higher hemoglobin A1c, higher urine albumin-to-creatinine ratio, increased glomerular basement membrane width and lower podocyte density compared to the pre-hyperfiltration group. A glomerular 1240-gene transcriptional signature identified in the hyperfiltration group was enriched for endothelial stress response signaling genes, including endothelin-1, tec-kinase and transforming growth factor-ß1 pathways, with the majority of the transcripts mapped to endothelial and inflammatory cell clusters in kidney single cell transcriptional data. Thus, our analysis reveals molecular pathomechanisms associated with hyperfiltration in early diabetic kidney disease involving putative ligand-receptor pairs with downstream intracellular targets linked to cellular crosstalk between endothelial and mesangial cells.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Kidney Glomerulus/pathology , Glomerular Filtration Rate , Glycated Hemoglobin/metabolism
14.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35675394

ABSTRACT

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Subject(s)
Kidney Diseases , Kidney , Humans , Kidney/pathology , Kidney Diseases/metabolism , Metabolomics/methods , Proteomics/methods , Transcriptome
15.
PLoS Comput Biol ; 18(4): e1010040, 2022 04.
Article in English | MEDLINE | ID: mdl-35468141

ABSTRACT

Studying isoform expression at the microscopic level has always been a challenging task. A classical example is kidney, where glomerular and tubulo-interstitial compartments carry out drastically different physiological functions and thus presumably their isoform expression also differs. We aim at developing an experimental and computational pipeline for identifying isoforms at microscopic structure-level. We microdissected glomerular and tubulo-interstitial compartments from healthy human kidney tissues from two cohorts. The two compartments were separately sequenced with the PacBio RS II platform. These transcripts were then validated using transcripts of the same samples by the traditional Illumina RNA-Seq protocol, distinct Illumina RNA-Seq short reads from European Renal cDNA Bank (ERCB) samples, and annotated GENCODE transcript list, thus identifying novel transcripts. We identified 14,739 and 14,259 annotated transcripts, and 17,268 and 13,118 potentially novel transcripts in the glomerular and tubulo-interstitial compartments, respectively. Of note, relying solely on either short or long reads would have resulted in many erroneous identifications. We identified distinct pathways involved in glomerular and tubulo-interstitial compartments at the isoform level, creating an important experimental and computational resource for the kidney research community.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Gene Expression Profiling/methods , Humans , Kidney , Protein Isoforms/genetics , RNA, Messenger/genetics
16.
J Am Soc Nephrol ; 33(6): 1208-1221, 2022 06.
Article in English | MEDLINE | ID: mdl-35477557

ABSTRACT

BACKGROUND: Molecular characterization of nephropathies may facilitate pathophysiologic insight, development of targeted therapeutics, and transcriptome-based disease classification. Although membranous nephropathy (MN) is a common cause of adult-onset nephrotic syndrome, the molecular pathways of kidney damage in MN require further definition. METHODS: We applied a machine-learning framework to predict diagnosis on the basis of gene expression from the microdissected kidney tissue of participants in the Nephrotic Syndrome Study Network (NEPTUNE) cohort. We sought to identify differentially expressed genes between participants with MN versus those of other glomerulonephropathies across the NEPTUNE and European Renal cDNA Bank (ERCB) cohorts, to find MN-specific gene modules in a kidney-specific functional network, and to identify cell-type specificity of MN-specific genes using single-cell sequencing data from reference nephrectomy tissue. RESULTS: Glomerular gene expression alone accurately separated participants with MN from those with other nephrotic syndrome etiologies. The top predictive classifier genes from NEPTUNE participants were also differentially expressed in the ERCB participants with MN. We identified a signature of 158 genes that are significantly differentially expressed in MN across both cohorts, finding 120 of these in a validation cohort. This signature is enriched in targets of transcription factor NF-κB. Clustering these MN-specific genes in a kidney-specific functional network uncovered modules with functional enrichments, including in ion transport, cell projection morphogenesis, regulation of adhesion, and wounding response. Expression data from reference nephrectomy tissue indicated 43% of these genes are most highly expressed by podocytes. CONCLUSIONS: These results suggest that, relative to other glomerulonephropathies, MN has a distinctive molecular signature that includes upregulation of many podocyte-expressed genes, provides a molecular snapshot of MN, and facilitates insight into MN's underlying pathophysiology.


Subject(s)
Glomerulonephritis, Membranous , Kidney Diseases , Nephrotic Syndrome , Podocytes , Adult , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/metabolism , Humans , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Glomerulus/metabolism , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Podocytes/metabolism
18.
Kidney Int ; 101(4): 779-792, 2022 04.
Article in English | MEDLINE | ID: mdl-34952098

ABSTRACT

Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.


Subject(s)
Kidney Diseases , Kidney Transplantation , Podocytes , Endothelial Cells , Female , Glomerular Basement Membrane/pathology , Humans , Hypertrophy , Integrin alpha3/metabolism , Kidney Diseases/pathology , Kidney Transplantation/adverse effects , Male , Podocytes/pathology
19.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: mdl-34767537

ABSTRACT

Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.


Subject(s)
Acute Kidney Injury/urine , COVID-19/urine , Kidney Tubules, Proximal/virology , Kidney/virology , Organoids/virology , SARS-CoV-2/pathogenicity , Acute Kidney Injury/etiology , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Apoptosis , Bowman Capsule/cytology , Bowman Capsule/virology , COVID-19/complications , Chlorocebus aethiops , Female , Gene Knockout Techniques , Hospital Mortality , Hospitalization , Humans , Kidney/metabolism , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Organoids/metabolism , Podocytes/virology , Polycystic Kidney Diseases , Protein Kinase D2/genetics , Proteome , Receptors, Coronavirus/genetics , Reproducibility of Results , Transcriptome , Vero Cells , Viral Tropism , Virus Replication
20.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34060483

ABSTRACT

Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of pro-cachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.


Subject(s)
Cachexia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Renal Insufficiency, Chronic/metabolism , Wasting Syndrome/metabolism , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Activins/genetics , Activins/metabolism , Animals , Cachexia/etiology , Cachexia/genetics , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Knockout , Muscular Atrophy/etiology , Muscular Atrophy/genetics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/genetics , Wasting Syndrome/etiology , Wasting Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...