Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(47): 18981-18990, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37226837

ABSTRACT

Monobromamine (NH2Br) and dibromamine (NHBr2) produced from reactions of hypobromous acid (HOBr) with ammonia can react with phenolic structures of natural organic matter (NOM) to produce disinfection byproducts such as bromoform (CHBr3). The reactivity of NH2Br was controlled by the reaction of the bromoammonium ion (NH3Br+) with phenolate species, with specific rate constants ranging from 6.32 × 102 for 2,4,6-tribromophenol to 1.22 × 108 M-1 s-1 for phenol. Reactions of NHBr2 with phenol and bromophenols were negligible compared to its self-decomposition; rate constants could be determined only with resorcinol for pH > 7. At pH 8.1-8.2, no formation of CHBr3 was observed from the reaction of NH2Br with phenol while the reaction of NH2Br with resorcinol produced a significant concentration of CHBr3. In contrast to NH2Br, a significant amount of CHBr3 produced with an excess of NHBr2 over phenol was explained by the reactions of HOBr produced from NHBr2 decomposition. A comprehensive kinetic model including the formation and decomposition of bromamines and the reactivity of HOBr and NH2Br with phenolic compounds was developed at pH 8.0-8.3. Furthermore, the kinetic model was used to evaluate the significance of the NH2Br and NHBr2 reactions with the phenolic structures of two NOM isolates.


Subject(s)
Phenols , Water Purification , Bromates/chemistry , Phenol/chemistry , Resorcinols , Kinetics
2.
Water Res ; 224: 119058, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36096028

ABSTRACT

Bromamines i.e. monobromamine (NH2Br), dibromamine (NHBr2), and tribromamine (NBr3) can be formed during oxidative treatment of waters containing bromide and ammonia. The formation and decomposition of bromamines in aqueous solution was investigated and a comprehensive kinetic model of the bromine-ammonia system was developed at 23 ± 1 °C. Determination of rate constants and model validation were primarily performed at pH 8.0 - 8.3 for subsequent application to seawater disinfection. The rate constant of NHBr2 self-decomposition was determined by second-order rate law linearization with k9 = 5.5 (± 0.8) M-1s-1 at pH 8.10. The rate constant of NBr3 self-decomposition increased proportionately to the concentration of hydroxide ions (OH-) according to the equation k10 = 4.4 (± 0.1) × 107. [OH-] over the pH range 6.0 - 8.5, which gave k10 = 56 (± 1) M-1s-1 at pH 8.10. The rate constants of NHBr2 and NBr3 formation were obtained by fitting model-predicted data to the experimental results and were found to be k3 = 2.3 (± 0.2) × 104M-1s-1 and k5 = 4.0 (± 0.6) × 103M-1s-1, respectively at pH 8.10. NBr3 was also found to react with NHBr2 with k11 = 3.4 (± 0.2) × 103M-1s-1 at pH 8.10. A kinetic model was proposed based on these experimental rate constants and literature values, which provided a good prediction of bromamines formation and decomposition for various initial bromine and ammonia concentrations. The kinetic model was also used to accurately predict the total oxidant concentration and the speciation of bromamines during breakpoint bromination. This study provides kinetic data to model more complex oxidative systems such as seawater chlorination in the presence of ammonia.


Subject(s)
Bromides , Water Purification , Ammonia/chemistry , Bromides/chemistry , Bromine/chemistry , Chlorine/chemistry , Kinetics , Oxidants
3.
Sci Total Environ ; 830: 154667, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35314219

ABSTRACT

During chlorination of seawater, the presence of bromide and ammonia alters the speciation of the oxidant and lead to the formation of chlorinated and brominated amines. This can affect the effectiveness of the disinfection treatment and the formation of disinfection by-products released to the environment. In this study, a Membrane Introduction Mass Spectrometry (MIMS) analytical method was developed to differentiate brominated trihalamines (i.e. tribromamine NBr3, dibromochloramine NBr2Cl and bromodichloramine NBrCl2) in synthetic and natural chlorinated seawater. A mass-to-charge ratio of m/z = 253 corresponding to the parent ion was used for the quantification of NBr3 in absence of organic matter and the signal of the fragment at m/z = 177 was chosen in presence of high concentration of organic matter. Limits of detection were 0.23 µM (49 µg Cl2/L) and 0.18 µM (38 µg Cl2/L) for m/z 253 and m/z 177, respectively. Both NBr2Cl and NBrCl2 were monitored in chlorinated seawaters with their respective parent ion at m/z = 207 and m/z = 163 but were not quantified. MIMS results also showed that reaction of brominated trihalamines with natural organic matter (NOM) was a minor pathway for 1-2 mg C/L compared to their auto-decomposition in natural or synthetic seawater. Overall, MIMS was able to unambiguously differentiate and monitor brominated trihalamines for the first time in chlorinated seawater, which was not possible by using UV measurement, titration and colorimetric methods.


Subject(s)
Disinfectants , Hydrocarbons, Halogenated , Water Pollutants, Chemical , Water Purification , Amines , Disinfection/methods , Halogenation , Hydrocarbons, Halogenated/analysis , Mass Spectrometry , Seawater , Water Pollutants, Chemical/analysis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...