Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Front Robot AI ; 11: 1295308, 2024.
Article in English | MEDLINE | ID: mdl-38756983

ABSTRACT

Dance plays a vital role in human societies across time and culture, with different communities having invented different systems for artistic expression through movement (genres). Differences between genres can be described by experts in words and movements, but these descriptions can only be appreciated by people with certain background abilities. Existing dance notation schemes could be applied to describe genre-differences, however they fall substantially short of being able to capture the important details of movement across a wide spectrum of genres. Our knowledge and practice around dance would benefit from a general, quantitative and human-understandable method of characterizing meaningful differences between aspects of any dance style; a computational kinematics of dance. Here we introduce and apply a novel system for encoding bodily movement as 17 macroscopic, interpretable features, such as expandedness of the body or the frequency of sharp movements. We use this encoding to analyze Hip Hop Dance genres, in part by building a low-cost machine-learning classifier that distinguishes genre with high accuracy. Our study relies on an open dataset (AIST++) of pose-sequences from dancers instructed to perform one of ten Hip Hop genres, such as Breakdance, Popping, or Krump. For comparison we evaluate moderately experienced human observers at discerning these sequence's genres from movements alone (38% where chance = 10%). The performance of a baseline, Ridge classifier model was fair (48%) and that of the model resulting from our automated machine learning pipeline was strong (76%). This indicates that the selected features represent important dimensions of movement for the expression of the attitudes, stories, and aesthetic values manifested in these dance forms. Our study offers a new window into significant relations of similarity and difference between the genres studied. Given the rich, complex, and culturally shaped nature of these genres, the interpretability of our features, and the lightweight techniques used, our approach has significant potential for generalization to other movement domains and movement-related applications.

2.
Ann Neurol ; 93(6): 1198-1213, 2023 06.
Article in English | MEDLINE | ID: mdl-36843340

ABSTRACT

OBJECTIVE: Spinal cord injury (SCI) damages synaptic connections between corticospinal axons and motoneurons of many muscles, resulting in devastating paralysis. We hypothesized that strengthening corticospinal-motoneuronal synapses at multiple spinal cord levels through Hebbian plasticity (i.e., "neurons that fire together, wire together") promotes recovery of leg and arm function. METHODS: Twenty participants with chronic SCI were randomly assigned to receive 20 sessions of Hebbian or sham stimulation targeting corticospinal-motoneuronal synapses of multiple leg muscles followed by exercise. Based on the results from this study, in a follow-up prospective study, 11 more participants received 40 sessions of Hebbian stimulation targeting corticospinal-motoneuronal synapses of multiple arm and leg muscles followed by exercise. During Hebbian stimulation sessions, 180 paired pulses elicited corticospinal action potentials by magnetic (motor cortex) and/or electrical (thoracic spine) stimulation allowing volleys to arrive at the spinal cord 1-2 milliseconds before motoneurons were activated retrogradely via bilateral electrical stimulation (brachial plexus, ulnar, femoral, and common peroneal nerves) for biceps brachii, first dorsal interosseous, quadriceps femoris, and tibialis anterior muscles as needed. RESULTS: We found in our randomized study that participants receiving Hebbian stimulation improved their walking speed and corticospinal function to a greater extent than individuals receiving sham stimulation. In agreement, prospective study participants improved their grasping and walking, corticospinal function, and quality of life metrics, exhibiting greater improvements with more sessions that persisted 9-month post-therapy. INTERPRETATION: Our findings suggest that multisite Hebbian stimulation, informed by the physiology of the corticospinal system, represents an effective strategy to promote functional recovery following SCI. ANN NEUROL 2023;93:1198-1213.


Subject(s)
Quality of Life , Spinal Cord Injuries , Humans , Prospective Studies , Pyramidal Tracts , Spinal Cord Injuries/therapy , Spinal Cord , Motor Neurons/physiology , Muscle, Skeletal/physiology , Evoked Potentials, Motor/physiology , Neuronal Plasticity/physiology
3.
Cell ; 185(26): 5011-5027.e20, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36563666

ABSTRACT

To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.


Subject(s)
Neurons , Zebrafish , Animals , Zebrafish/physiology , Neurons/physiology , Rhombencephalon/physiology , Brain/physiology , Swimming/physiology , Homeostasis , Mammals
4.
Elife ; 112022 Oct 26.
Article in English | MEDLINE | ID: mdl-36286237

ABSTRACT

Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


Subject(s)
Connectome , Microscopy , Animals , Connectome/methods , Synapses/physiology , Drosophila , Tissue Expansion
5.
Nat Commun ; 13(1): 3802, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778397

ABSTRACT

Folded proteins are assumed to be built upon fixed scaffolds of secondary structure, α-helices and ß-sheets. Experimentally determined structures of >58,000 non-redundant proteins support this assumption, though it has recently been challenged by ~100 fold-switching proteins. Though ostensibly rare, these proteins raise the question of how many uncharacterized proteins have shapeshifting-rather than fixed-secondary structures. Here, we use a comparative sequence-based approach to predict fold switching in the universally conserved NusG transcription factor family, one member of which has a 50-residue regulatory subunit experimentally shown to switch between α-helical and ß-sheet folds. Our approach predicts that 24% of sequences in this family undergo similar α-helix ⇌ ß-sheet transitions. While these predictions cannot be reproduced by other state-of-the-art computational methods, they are confirmed by circular dichroism and nuclear magnetic resonance spectroscopy for 10 out of 10 sequence-diverse variants. This work suggests that fold switching may be a pervasive mechanism of transcriptional regulation in all kingdoms of life.


Subject(s)
Transcription Factors , Amino Acid Sequence , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains
6.
Elife ; 102021 06 11.
Article in English | MEDLINE | ID: mdl-34114951

ABSTRACT

In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor (⍺1-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that patients exposed to ⍺1-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of ⍺1-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/therapeutic use , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/drug therapy , Aged , Aged, 80 and over , Doxazosin/therapeutic use , Humans , Male , Middle Aged , Pneumonia, Viral/mortality , Respiratory Distress Syndrome/mortality , Retrospective Studies , Sweden/epidemiology , Tamsulosin/therapeutic use , United States/epidemiology
7.
ArXiv ; 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-32550250

ABSTRACT

In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor ($\alpha_1$-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n=18,547) and three cohorts with pneumonia (n=400,907). Federated across two ARD cohorts, we find that patients exposed to $\alpha_1$-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR=0.70, p=0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of $\alpha_1$-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.

8.
Curr Opin Neurobiol ; 64: 151-160, 2020 10.
Article in English | MEDLINE | ID: mdl-33091825

ABSTRACT

The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.


Subject(s)
Nervous System Physiological Phenomena , Zebrafish , Animals , Brain , Larva , Synapses
9.
Neuron ; 107(5): 954-971.e9, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32589878

ABSTRACT

Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.


Subject(s)
Learning/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Motor Skills/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Animals , Male , Mice , Mice, Inbred C57BL
11.
Nature ; 577(7790): 386-391, 2020 01.
Article in English | MEDLINE | ID: mdl-31875851

ABSTRACT

The motor cortex controls skilled arm movement by sending temporal patterns of activity to lower motor centres1. Local cortical dynamics are thought to shape these patterns throughout movement execution2-4. External inputs have been implicated in setting the initial state of the motor cortex5,6, but they may also have a pattern-generating role. Here we dissect the contribution of local dynamics and inputs to cortical pattern generation during a prehension task in mice. Perturbing cortex to an aberrant state prevented movement initiation, but after the perturbation was released, cortex either bypassed the normal initial state and immediately generated the pattern that controls reaching or failed to generate this pattern. The difference in these two outcomes was probably a result of external inputs. We directly investigated the role of inputs by inactivating the thalamus; this perturbed cortical activity and disrupted limb kinematics at any stage of the movement. Activation of thalamocortical axon terminals at different frequencies disrupted cortical activity and arm movement in a graded manner. Simultaneous recordings revealed that both thalamic activity and the current state of cortex predicted changes in cortical activity. Thus, the pattern generator for dexterous arm movement is distributed across multiple, strongly interacting brain regions.


Subject(s)
Motor Cortex/physiology , Movement , Animals , Behavior, Animal , Female , Male , Mice , Thalamus/physiology
12.
Nat Neurosci ; 22(11): 1945, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31576055

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Neurosci ; 22(11): 1925-1935, 2019 11.
Article in English | MEDLINE | ID: mdl-31527803

ABSTRACT

The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.


Subject(s)
Cerebral Cortex/anatomy & histology , Thalamus/anatomy & histology , Action Potentials , Animals , Atlases as Topic , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Humans , Mice , Mice, Transgenic , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Neural Pathways/physiology , Thalamus/metabolism , Thalamus/physiology , Transcriptome
14.
Science ; 365(6454): 699-704, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31371562

ABSTRACT

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Subject(s)
Monitoring, Physiologic/methods , Neuroimaging/methods , Neurons/physiology , Voltage-Sensitive Dye Imaging/methods , Animals , Behavior, Animal , Fluorescence , Fluorescence Resonance Energy Transfer , Genetic Engineering , Larva , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Mesencephalon/cytology , Mesencephalon/physiology , Mice , Optogenetics , Protein Domains , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/genetics , Swimming , Zebrafish
15.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31230713

ABSTRACT

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Subject(s)
Astrocytes/metabolism , Behavior, Animal/physiology , Larva/physiology , Zebrafish/physiology , Adrenergic Neurons/metabolism , Animals , Animals, Genetically Modified/physiology , Astrocytes/cytology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Calcium/metabolism , Cell Communication/physiology , Feedback, Sensory/physiology , GABAergic Neurons/metabolism , Membrane Potentials/physiology , Optogenetics , Swimming/physiology
16.
Curr Opin Neurobiol ; 55: 199-212, 2019 04.
Article in English | MEDLINE | ID: mdl-31102987

ABSTRACT

Cognitive phenotypes characterize our memories, beliefs, skills, and preferences, and arise from our ancestral, developmental, and experiential histories. These histories are written into our brain structure through the building and modification of various brain circuits. Connectal coding, by way of analogy with neural coding, is the art, study, and practice of identifying the network structures that link cognitive phenomena to individual histories. We propose a formal statistical framework for connectal coding and demonstrate its utility in several applications spanning experimental modalities and phylogeny.


Subject(s)
Brain , Cognition , Memory , Phenotype , Phylogeny
17.
Sci Transl Med ; 10(432)2018 03 14.
Article in English | MEDLINE | ID: mdl-29540617

ABSTRACT

To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines.


Subject(s)
Prostheses and Implants , Amputees , Hand/physiology , Humans , Kinesthesis , Motion Perception/physiology , Movement/physiology , Perception/physiology , Robotics
19.
Science ; 356(6333)2017 04 07.
Article in English | MEDLINE | ID: mdl-28385956

ABSTRACT

Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.


Subject(s)
Behavior, Animal/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Quinoxalines/pharmacology , Receptors, Glutamate/metabolism , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Drug Design , Long-Term Potentiation/drug effects , Mice , Muscarinic Antagonists/pharmacology , Neurons/drug effects , Optogenetics , Parkinson Disease/physiopathology
20.
Cell ; 167(4): 933-946.e20, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27881303

ABSTRACT

To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN's ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system. VIDEO ABSTRACT.


Subject(s)
Learning , Models, Neurological , Swimming , Zebrafish/physiology , Animals , Brain Mapping , Larva , Optogenetics , Raphe Nuclei/physiology , Serotonergic Neurons/cytology , Serotonergic Neurons/physiology , Spatial Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...