Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Mol Neurosci ; 15: 938315, 2022.
Article in English | MEDLINE | ID: mdl-36204136

ABSTRACT

The blood-brain barrier (BBB) is a robust interface between the blood and the central nervous system. Barrier type endothelium is able to limit paracellular (PC) movement, relegating molecular flux to the transendothelial pathways of brain endothelial cells (BECs). It is, therefore, apparent that any leakage via the PC shunts would effectively nullify the regulation of molecular flux across the transcellular pathways. The application of higher-resolution scanning electron microscopy (HR-SEM) illuminates the heterogenous, morphological profile that exists on the surface of BEC membranes and the relationship between these ultrastructures during the molecular construction of the PC space between adjacent BECs. In this study developing BEC monolayers were grown on mixed, cellulose esters insert membranes in a bicameral system. BEC monolayers were fixed in 2.5% glutaraldehyde, hydrated, critically dried, and sputter-coated, for imaging utilizing HR-SEM. This study, for the first time, showed membrane-bound exosomes were attached to the plasma membrane surfaces of the BECs. The exosomes were characterized as small membrane-bound, nano-sized exosomes (30-300 nm). Based on their membrane morphology and anatomical structure, exosomes appear to possess two distinct functions, namely: paracrine secretion and nanotube construction between adjacent BECs, during in vitro barrier genesis. The HR-SEM micrographs in conjunction with the Tipifarnib inhibition of exosome formation, suggests that brain capillary endothelial exosomes play a prominent role in the bilateral signaling, which contribute to the regulation of the permeability of the BBB. Given that blood-brain barrier permeability has been implicated in the progression of many neurodegenerative pathologies, the role of these exosomes and TUNTs posits the capacity of these structures to exacerbate neuropathologies that implicate BBB permeability. These findings could lead to the development of novel treatment interventions and moreover, the characterization of BBB exosomes may be a reliable target for identifying therapeutic biomarkers in neurodegenerative disease. Conversely, the presence of BBB exosomes raises a critical enterprise to target the exosome-induced nanotubes as a vehicle for transferring therapeutic treatments across the BBB.

2.
PLoS One ; 17(7): e0266943, 2022.
Article in English | MEDLINE | ID: mdl-35802747

ABSTRACT

Scanning electron microscopy (SEM) provides a technical platform for nanoscopic mapping of biological structures. Correct preparation of SEM samples can provide an unprecedented understanding of the nexus between cellular morphology and topography. This comparative study critically examines two coating methods for preparing biological samples for scanning electron microscopy, while also providing novel advice on how to prepare in vitro epithelial or endothelial samples for high-resolution scanning-electron microscopy (HR-SEM). Two obstacles often confront the biologist when investigating cellular structures grown under tissue culture conditions, namely., how to prepare and present the biological samples to the HR-SEM microscope without affecting topographical membrane and cellular structural alterations. Firstly, our use of the Millicell cellulose inserts on which to grow our cellular samples in preparation for HR-SEM is both novel and advantageous to comparing the permeability function of cells to their morphological function. Secondly, biological material is often non-conducting, thermally sensitive and fragile and, therefore, needs to be fixed correctly and coated with thin conducting metal to ensure high-resolution detail of samples. Immortalized mouse brain endothelial cells (bEnd5) was used as a basis for describing the preferences in the use of the protocol. We compare two biological sample coating modalities for the visualizing and analysis of texturized, topographical, membranous ultrastructures of brain endothelial cell (BEC) confluent monolayers, namely, carbon and gold:palladium (Au:Pd) sputter coating in preparation for HR-SEM. BEC monolayers sputter-coated with these two modalities produced three-dimensional micrographs which have distinctly different topographical detail from which the nanostructural cellular data can be examined. The two coating methods display differences in the amount of nanoscopic detail that could be resolved in the nanosized membrane cytoarchitecture of BEC monolayers. The micrographical data clearly showed that Au:Pd sputter-coated samples generate descript imagery, providing useful information for profiling membrane nanostructures compared to carbon-coated samples. The recommendations regarding the contrast in two modalities would provide the necessary guidance to biological microscopists in preparing tissue culture samples for HR-SEM.


Subject(s)
Electrons , Endothelial Cells , Animals , Carbon , Gold , Mice , Microscopy, Electron, Scanning
3.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269595

ABSTRACT

The blood-brain barrier (BBB) is fundamental in maintaining central nervous system (CNS) homeostasis by regulating the chemical environment of the underlying brain parenchyma. Brain endothelial cells (BECs) constitute the anatomical and functional basis of the BBB. Communication between adjacent BECs is critical for establishing BBB integrity, and knowledge of its nanoscopic landscape will contribute to our understanding of how juxtaposed zones of tight-junction protein interactions between BECs are aligned. The review discusses and critiques types of nanostructures contributing to the process of BBB genesis. We further critically evaluate earlier findings in light of novel high-resolution electron microscopy descriptions of nanoscopic tubules. One such phenotypic structure is BEC cytoplasmic projections, which, early in the literature, is postulated as brain capillary endothelial cilia, and is evaluated and compared to the recently discovered nanotubules (NTs) formed in the paracellular spaces between BECs during barrier-genesis. The review attempts to elucidate a myriad of unique topographical ultrastructures that have been reported to be associated with the development of the BBB, viz., structures ranging from cilia to BEC tunneling nanotubules (TUNTs) and BEC tethering nanotubules (TENTs).


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Blood-Brain Barrier/metabolism , Brain/metabolism , Cilia/metabolism , Endothelial Cells/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
4.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054928

ABSTRACT

The brain capillary endothelium is highly regulatory, maintaining the chemical stability of the brain's microenvironment. The role of cytoskeletal proteins in tethering nanotubules (TENTs) during barrier-genesis was investigated using the established immortalized mouse brain endothelial cell line (bEnd5) as an in vitro blood-brain barrier (BBB) model. The morphology of bEnd5 cells was evaluated using both high-resolution scanning electron microscopy and immunofluorescence to evaluate treatment with depolymerizing agents Cytochalasin D for F-actin filaments and Nocodazole for α-tubulin microtubules. The effects of the depolymerizing agents were investigated on bEnd5 monolayer permeability by measuring the transendothelial electrical resistance (TEER). The data endorsed that during barrier-genesis, F-actin and α-tubulin play a cytoarchitectural role in providing both cell shape dynamics and cytoskeletal structure to TENTs forming across the paracellular space to provide cell-cell engagement. Western blot analysis of the treatments suggested a reduced expression of both proteins, coinciding with a reduction in the rates of cellular proliferation and decreased TEER. The findings endorsed that TENTs provide alignment of the paracellular (PC) spaces and tight junction (TJ) zones to occlude bEnd5 PC spaces. The identification of specific cytoskeletal structures in TENTs endorsed the postulate of their indispensable role in barrier-genesis and the maintenance of regulatory permeability across the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/ultrastructure , Cytoskeletal Proteins/metabolism , Actins/metabolism , Animals , Biomarkers , Cell Line , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Endothelium, Vascular/metabolism , Endothelium, Vascular/ultrastructure , Fluorescent Antibody Technique , Gene Expression , Mice , Nocodazole/pharmacology , Permeability/drug effects
5.
Front Neuroanat ; 15: 661065, 2021.
Article in English | MEDLINE | ID: mdl-34248507

ABSTRACT

High-resolution electron microscopy (HREM) imaging of the in vitro blood-brain barrier (BBB), is a promising modality for investigating the dynamic morphological interplay underpinning BBB development. The successful establishment of BBB integrity is grounded in the brain endothelial cells (BEC's) ability to occlude its paracellular spaces of brain capillaries through the expression of the intercellular tight junction (TJ) proteins. The impermeability of these paracellular spaces are crucial in the regulation of transcellular transport systems to achieve homeostasis of the central nervous system. To-date research describing morphologically, the dynamics by which TJ interaction is orchestrated to successfully construct a specialized barrier remains undescribed. In this study, the application of HREM illuminates the novel, dynamic and highly restrictive BEC paracellular pathway which is founded based on lateral membrane alignment which is the functional imperative for the mechanical juxtapositioning of TJ zones that underpin molecular bonding and sealing of the paracellular space. For the first time, we report on the secretion of a basement membrane in vitro, which allow BECs to orientate themselves into distinct basolateral and apicolateral domains and establish a 3-dimensional BEC construct. We report for the first time, on the expression of nanovesicles bound to the plasma membrane surfaces of the BECs. These membrane-bound vesicles are reported to possess an array of DNA/RNA constituents and chemotaxic properties affecting the formation of nanotubes that span the paracellular space between BECs, facilitating BBB construction, alluding to a functional role in mediating cell-to-cell communication. This study suggests that novel, ultrathin nanotubular (NT) structures are involved in functional roles in bringing into alignment the paracellular space of BECs. Immortalized mouse BECs (b.End3, b.End5) and primary rat cardiac microvascular ECs were used to further validate the in vitro BBB model by profiling variances in peripheral EC monolayer development. These cardiac capillary ECs presented with an opposite topographical profile: large fenestra and intercellular spaces, devoid of morphological ultrastructures. This comparative study alludes to the role of NT facilitation in TJ-induced hemifusion of apicolateral BEC membranes, as a structural event forming the basis for establishing a polarized BBB.

6.
Neural Regen Res ; 15(10): 1838-1839, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32246625
7.
Neuroscientist ; 26(2): 134-155, 2020 04.
Article in English | MEDLINE | ID: mdl-31092147

ABSTRACT

Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Brain Injuries, Traumatic/physiopathology , Brain/metabolism , Inflammation/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/pathology , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Humans , Inflammation/physiopathology
8.
Mol Neurobiol ; 56(10): 6964-6975, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30949973

ABSTRACT

The pathological form of amyloid beta (Aß) peptide is shown to be toxic to the mitochondria and implicates this organelle in the progression and pathogenesis of Alzheimer's disease (AD). Mitochondria are dynamic structures constantly undergoing fission and fusion, and altering their shape and size while traveling through neurons. Mitochondrial fission (Drp1, Fis1) and fusion (OPA1, Mfn1, and Mfn2) proteins are balanced in healthy neuronal cells. Glia maturation factor (GMF), a neuroinflammatory protein isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. We hypothesized that GMF, a brain-localized inflammatory protein, promotes oxidative stress-mediated disruption of mitochondrial dynamics by alterations in mitochondrial fission and fusion proteins which eventually leads to apoptosis in the Aß (1-42)-treated human neuroblastoma (SH-SY5Y) cells. The SH-SY5Y cells were incubated with GMF and Aß (1-42) peptide, and mitochondrial fission and fusion proteins were analyzed by immunofluorescence, western blotting, and co-immunoprecipitation. We report that SH-SY5Y cells incubated with GMF and Aß (1-42) promote mitochondrial fragmentation, by potentiating oxidative stress, mitophagy and shifts in the Bax/Bcl2 expression and release of cytochrome-c, and eventual apoptosis. In the present study, we show that GMF and Aß treatments significantly upregulate fission proteins and downregulate fusion proteins. The study shows that extracellular GMF is an important inflammatory mediator that mediates mitochondrial dynamics by altering the balance in fission and fusion proteins and amplifies similar effects promoted by Aß. Upregulated GMF in the presence of Aß could be an additional risk factor for AD, and their synergistic actions need to be explored as a potential therapeutic target to suppress the progression of AD.


Subject(s)
Amyloid beta-Peptides/toxicity , Glia Maturation Factor/toxicity , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Peptide Fragments/toxicity , Adenosine Triphosphate/metabolism , Antioxidants/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cytochromes c/metabolism , Cytosol/metabolism , Humans , Mitophagy/drug effects , Neurotoxins/toxicity , Oxidative Stress/drug effects , Protein Binding/drug effects
9.
Artif Cells Nanomed Biotechnol ; 47(1): 1428-1436, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31007068

ABSTRACT

Nanoparticles (NPs) have gained importance in addressing drug delivery challenges across biological barriers. Here, we reformulated pentamidine, a drug used to treat Human African Trypanosomiasis (HAT) in polymer based nanoparticles and liposomes and compared their capability to enhance pentamidine penetration across blood brain barrier (BBB). Size, polydispersity index, zeta potential, morphology, pentamidine loading and drug release profiles were determined by various methods. Cytotoxicity was tested against the immortalized mouse brain endothelioma cells over 96 h. Moreover, cells monolayer integrity and transportation ability were examined for 24 h. Pentamidine-loaded polycaprolactone (PCL) nanoparticles had a mean size of 267.58, PDI of 0.25 and zeta potential of -28.1 mV and pentamidine-loaded liposomes had a mean size of 119.61 nm, PDI of 0.25 and zeta potential 11.78. Pentamidine loading was 0.16 µg/mg (w/w) and 0.17 µg/mg (w/w) in PCL NPs and liposomes respectively. PCL nanoparticles and liposomes released 12.13% and 22.21% of pentamidine respectively after 24 h. Liposomes transported 87% of the dose, PCL NPs 66% of the dose and free pentamidine penetration was 63% of the dose. These results suggest that liposomes are comparatively promising nanocarriers for transportation of pentamidine across BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Carriers/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Pentamidine/metabolism , Phosphatidylcholines/chemistry , Polyesters/chemistry , Animals , Cell Line , Drug Carriers/toxicity , Drug Liberation , Mice , Pentamidine/chemistry
10.
J Neuroimmune Pharmacol ; 14(4): 608-641, 2019 12.
Article in English | MEDLINE | ID: mdl-31011884

ABSTRACT

Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Gene Editing/trends , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Precision Medicine/trends , Animals , Gene Editing/methods , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Precision Medicine/methods , Treatment Outcome
11.
Front Cell Neurosci ; 13: 54, 2019.
Article in English | MEDLINE | ID: mdl-30837843

ABSTRACT

Mast cell activation plays an important role in stress-mediated disease pathogenesis. Chronic stress cause or exacerbate aging and age-dependent neurodegenerative diseases. The severity of inflammatory diseases is worsened by the stress. Mast cell activation-dependent inflammatory mediators augment stress associated pain and neuroinflammation. Stress is the second most common trigger of headache due to mast cell activation. Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disease that affects more women than men and woman's increased susceptibility to chronic stress could increase the risk for AD. Modern life-related stress, social stress, isolation stress, restraint stress, early life stress are associated with an increased level of neurotoxic beta amyloid (Aß) peptide. Stress increases cognitive dysfunction, generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aß persists for years and generates APs even several years after the stress exposure. Stress activates hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone (CRH) from hypothalamus and in peripheral system, which increases the formation of Aß, tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast cells are implicated in nociception and pain. Mast cells are the source and target of CRH and other neuropeptides that mediate neuroinflammation. Microglia express receptor for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of how stress-mediated mast cell activation contribute to the pathogenesis of AD remains elusive. This mini-review highlights the possible role of stress and mast cell activation in neuroinflammation, BBB, and tight junction disruption and AD pathogenesis.

13.
Curr Neurovasc Res ; 14(1): 71-81, 2017.
Article in English | MEDLINE | ID: mdl-27897111

ABSTRACT

Oxidative stress in the brain microvasculature is a common characteristic in models of cerebrovascular disease. Considering the effects of reactive oxygen species activity in vascular-derived insults, it is naturally prudent to hypothesize those interventions inhibiting reactive oxygen species activity, such as antioxidant supplementation, may be beneficial for cerebrovascular disease. Hyper doses of antioxidant supplements, and foods with high antioxidant concentrations, are commonly used as an ongoing remedial and 'over-the-counter' treatments for most seasonal ailments. For the first time, this study reports the adverse effects of excess antioxidants on angiogenic properties of the blood-brain barrier (BBB) which have clinical implications. A medicinal tea, known as Rooibos, commonly used in South Africa and marketed globally, for its prominent antioxidant profile, demonstrated its effects on brain endothelial cellular proliferation, toxicology, mitochondrial activity and permeability. Mouse brain endothelial cells were seeded at cell densities ranging from 103-106 cells/ml and were incubated at pre-determined time intervals of 24 to120 hours. Daily exposure of a selected concentration range of fermented Rooibos tea caused dose-related decreases in cellular proliferation, and unequivocally decreased permeability across our in vitro BBB model. Despite the negative effects on cellular proliferation, no toxicity was observed for all selected fermented Rooibos concentrations. Our data conclusively shows that the use of excess antioxidants perturbs BBB functionality and angiogenic properties, adversely implicating the homeostatic regulation of the brain microenvironment, while suppression in cellular proliferation impacts both the maintenance and repair function of brain capillaries. Our study indicates that excess antioxidants will lead to an impaired response to mechanical-induced injury and pathogenic infection of the BBB, compromising patient recovery.


Subject(s)
Blood-Brain Barrier , Brain/blood supply , Endothelial Cells , Oxidative Stress , Angiogenesis Inducing Agents/pharmacology , Animals , Antioxidants/pharmacology , Aspalathus/chemistry , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Endothelial Cells/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...