Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Org Biomol Chem ; 20(21): 4314-4319, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35583170

ABSTRACT

Resin-immobilized catalysts were prepared through chirality-driven self-assembly. The method allows the resin-immobilized catalyst to be regenerated under mild conditions and in situ catalyst exchange to be carried out quantitatively. The uniqueness of the methodology was demonstrated by the preparation of a catalyst for TEMPO oxidation as well as a two-step sequential TEMPO oxidation/aldol condensation sequence enabled by facile catalyst exchange.


Subject(s)
Catalysis , Oxidation-Reduction
2.
Chem Commun (Camb) ; 57(52): 6404-6407, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34086017

ABSTRACT

A strategy to build Janus dendrimers via the chirality-directed self-assembly of heteroleptic Zn(ii) BOX complexes is reported. The method allows quantitative synthesis of Janus dendrimers in situ without the need for purifications. Each dendritic domain of the Janus dendrimers can be recycled upon disassembly at the focal point.

3.
Bone Joint Res ; 10(4): 277-284, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33845590

ABSTRACT

AIMS: Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. METHODS: For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. RESULTS: The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. CONCLUSION: SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277-284.

4.
Chemistry ; 24(13): 3113-3116, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29349830

ABSTRACT

The addition of phenyllithium to a polycyclic quinone, 9,11,12,21,22,24-hexaphenyltetrabenzo[a,c,n,p]hexacene-10,23-dione (10), followed by SnCl2 -mediated reduction of the diol intermediate, yielded 9,10,11,12,21,22,23,24-octaphenyltetrabenzo-[a,c,n,p]hexacene (4). Crystallographic analysis of hexacene 4 showed it to possess a longitudinal twist of 184°, which was in good agreement with AM1 calculations. In addition to being the most twisted acene synthesized to this point, compound 4 contains within its substructure the most twisted naphthalene, anthracene, tetracene, and pentacene moieties described.

5.
Chemistry ; 24(1): 243-250, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29115021

ABSTRACT

Seven longitudinally twisted acenes (an anthracene, two tetracenes, three pentacenes, and a hexacene) have been synthesized by the addition of aryllithium reagents to the appropriate quinone precursors, followed by SnCl2 -mediated reduction of their diol intermediates, and several of these acenes have been crystallographically characterized. The new syntheses of the three previously reported twisted acenes, decaphenylanthracene (1), 9,10,11,20,21,22-hexaphenyltetrabenzo[a,c,l,n]pentacene (2), and 9,10,11,12,13,14,15,16-octaphenyldibenzo[a,c]tetracene (14), resulted in a reduction of the number of synthetic steps. As a consequence their overall yields were increased by factors of 50-, 24-, and 66-fold, respectively. All of the twisted acene syntheses reported here are suitable for the synthesis of at least gram quantities of these remarkable hydrocarbon materials.

SELECTION OF CITATIONS
SEARCH DETAIL