Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
3.
Heart Rhythm ; 20(3): 430-437, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36368515

ABSTRACT

BACKGROUND: Bipolar voltage is widely used to characterize the atrial substrate but has been poorly validated, particularly during clinical tachycardias. OBJECTIVE: The purpose of this study was to evaluate the diagnostic performance of voltage thresholds for identifying regions of slow conduction during reentrant atrial tachycardias (ATs). METHODS: Thirty bipolar voltage and activation maps created during reentrant ATs were analyzed to (1) examine the relationship between voltage amplitude and conduction velocity (CV), (2) measure the diagnostic ability of voltage thresholds to predict CV, and (3) identify determinants of AT circuit dimensions. Voltage amplitude was categorized as "normal" (>0.50 mV), "abnormal" (0.05-0.50 mV), or "scar" (<0.05 mV); slow conduction was defined as <30 cm/s. RESULTS: A total of 266,457 corresponding voltage and CV data points were included for analysis. Voltage and CV were moderately correlated (r = 0.407; P < .001). Bipolar voltage predicted regions of slow conduction with an area under the receiver operating characteristic curve of 0.733 (95% confidence interval 0.731-0.735). A threshold of 0.50 mV had 91% sensitivity and 35% specificity for identifying slow conduction, whereas 0.05 mV had 36% sensitivity and 87% specificity, with an optimal voltage threshold of 0.15 mV. Analyses restricted to the AT circuits identified weaker associations between voltage and CV and an optimal voltage threshold of 0.25 mV. CONCLUSION: Widely used bipolar voltage amplitude thresholds to define "abnormal" and "scar" tissue in the atria are, respectively, sensitive and specific for identifying regions of slow conduction during reentrant ATs. However, overall, the association of voltage with CV is modest. No clinical predictors of AT circuit dimensions were identified.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Tachycardia, Ventricular , Humans , Catheter Ablation/methods , Heart Atria , Heart Rate/physiology , Cicatrix
4.
Heart Rhythm ; 19(5): 701-709, 2022 05.
Article in English | MEDLINE | ID: mdl-35033665

ABSTRACT

BACKGROUND: An understanding of normal atrial activation during sinus rhythm can inform catheter ablation strategies to avoid deleterious impacts of ablation lesions on atrial conduction and mechanics. OBJECTIVE: The purpose of this study was to describe how the sinus node impulse originates, propagates, and collides in right and left atria with normal voltage. METHODS: Fifty consecutive patients undergoing catheter ablation of atrial fibrillation with endocardial atrial voltage >0.5 mV during high-density 3-dimensional mapping were studied. RESULTS: Sinus node exits varied among patients along a lateral oblique arc extending from the anterior aspect of the superior vena cava (SVC) to the mid-posterior wall of the right atrium (RA). Conduction slowing or block at one of the smooth components that faces the crista terminalis was observed in 54% of cases, including complete block at the SVC musculature and systemic venous sinus in 6% of cases. Depending on these 2 key features of RA activation, interatrial conduction was mediated by the Bachmann bundle (64%) and posterior bundles (54%), with an overlap of the resulting left atrial breakthrough location. Wavefront collision was consistently observed at 3 sites: the septal aspect of the cavotricuspid isthmus, and the lower aspects of the dome and of the mitral isthmus. CONCLUSION: During sinus rhythm, atrial activation occurs via distinct sequences mediated by a complex interaction of anatomic factors.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Atria , Humans , Sinoatrial Node , Vena Cava, Superior/pathology
5.
Front Physiol ; 11: 554838, 2020.
Article in English | MEDLINE | ID: mdl-33071814

ABSTRACT

BACKGROUND: Ventricular fibrillation (VF) is the main cause of sudden cardiac death, but its mechanisms are still unclear. We propose a noninvasive approach to describe the progression of VF complexity from body surface potential maps (BSPMs). METHODS: We mapped 252 VF episodes (16 ± 10 s) with a 252-electrode vest in 110 patients (89 male, 47 ± 18 years): 50 terminated spontaneously, otherwise by electrical cardioversion (DCC). Changes in complexity were assessed between the onset ("VF start") and the end ("VF end") of VF by the nondipolar component index (N D I B S P M ), measuring the fraction of energy nonpreserved by an equivalent 3D dipole from BSPMs. Higher NDI reflected lower VF organization. We also examined other standard body surface markers of VF dynamics, including fibrillatory wave amplitude (A BSPM ), surface cycle length (BsCL BSPM ) and Shannon entropy (S h E n B S P M ). Differences between patients with and without structural heart diseases (SHD, 32 vs. NSHD, 78) were also tested at those stages. Electrocardiographic features were validated with simultaneous endocardium cycle length (CL) in a subset of 30 patients. RESULTS: All BSPM markers measure an increase in electrical complexity during VF (p < 0.0001), and more significantly in NSHD patients. Complexity is significantly higher at the end of sustained VF episodes requiring DCC. Intraepisode intracardiac CL shortening (VF start 197 ± 24 vs. VF end 169 ± 20 ms; p < 0.0001) correlates with an increase in NDI, and decline in surface CL, f-wave amplitude, and entropy (p < 0.0001). In SHD patients VF is initially more complex than in NSHD patients (N D I B S P M , p = 0.0007; S h E n B S P M , p < 0.0001), with moderately slower (BsCL BSPM , p = 0.06), low-amplitude f-waves (A BSPM , p < 0.0001). In this population, lower NDI (p = 0.004) and slower surface CL (p = 0.008) at early stage of VF predict self-termination. In the NSHD group, a more abrupt increase in VF complexity is quantified by all BSPM parameters during sustained VF (p < 0.0001), whereas arrhythmia evolution is stable during self-terminating episodes, hinting at additional mechanisms driving VF dynamics. CONCLUSION: Multilead BSPM analysis underlines distinct degrees of VF complexity based on substrate characteristics.

6.
Front Physiol ; 11: 933, 2020.
Article in English | MEDLINE | ID: mdl-32903614

ABSTRACT

BACKGROUND: Increased heterogeneity of ventricular repolarization is associated with life-threatening arrhythmia and sudden cardiac death (SCD). T-wave analysis through body surface potential mapping (BSPM) is a promising tool for risk stratification, but the clinical effectiveness of current electrocardiographic indices is still unclear, with limited experimental validation. This study aims to investigate performance of non-invasive state-of-the-art and novel T-wave markers for repolarization dispersion in an ex vivo model. METHODS: Langendorff-perfused pig hearts (N = 7) were suspended in a human-shaped 256-electrode torso tank. Tank potentials were recorded during sinus rhythm before and after introducing repolarization inhomogeneities through local perfusion with dofetilide and/or pinacidil. Drug-induced repolarization gradients were investigated from BSPMs at different experiment phases. Dispersion of electrical recovery was quantified by duration parameters, i.e., the time interval between the peak and the offset of T-wave (TPEAK-TEND) and QT interval, and variability over time and electrodes was also assessed. The degree of T-wave symmetry to the peak was quantified by the ratio between the terminal and initial portions of T-wave area (Asy). Morphological variability between left and right BSPM electrodes was measured by dynamic time warping (DTW). Finally, T-wave organization was assessed by the complexity of repolarization index (CR), i.e., the amount of energy non-preserved by the dominant eigenvector computed by principal component analysis (PCA), and the error between each multilead T-wave and its 3D PCA approximation (NMSE). Body surface indices were compared with global measures of epicardial dispersion of repolarization, and with local gradients between adjacent ventricular sites. RESULTS: After drug intervention, both regional and global repolarization heterogeneity were significantly enhanced. On the body surface, TPEAK-TEND was significantly prolonged and less stable in time in all experiments, while QT interval showed higher variability across the interventions in terms of duration and spatial dispersion. The rising slope of the repolarization profile was steeper, and T-waves were more asymmetric than at baseline. Interventricular shape dissimilarity was enhanced by repolarization gradients according to DTW. Organized T-wave patterns were associated with abnormal repolarization, and they were properly described by the first principal components. CONCLUSION: Repolarization heterogeneity significantly affects T-wave properties, and can be non-invasively captured by BSPM-based metrics.

7.
Am J Physiol Heart Circ Physiol ; 319(4): H893-H905, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32886003

ABSTRACT

Heart rate variability (HRV) is a measure of variation in time interval between heartbeats and reflects the influence of autonomic nervous system and circulating/locally released factors on sinoatrial node discharge. Here, we tested whether electrocardiograms (ECGs) obtained in conscious, restrained mice, a condition that affects sympathovagal balance, reveal alterations of heart rhythm dynamics with aging. Moreover, based on emergence of sodium channels as modulators of pacemaker activity, we addressed consequences of altered sodium channels on heart rhythm. C57Bl/6 mice and mice with enhanced late sodium current due to Nav1.5 mutation at Ser571 (S571E) at ~4 to ~24 mo of age, were studied. HRV was assessed using time- and frequency-domain and nonlinear parameters. For C57Bl/6 and S571E mice, standard deviation of RR intervals (SDRR), total power of RR interval variation, and nonlinear standard deviation 2 (SD2) were maximal at ~4 mo and decreased at ~18 and ~24 mo, together with attenuation of indexes of sympathovagal balance. Modulation of sympathetic and/or parasympathetic divisions revealed attenuation of autonomic tone at ~24 mo. At ~4 mo, S571E mice presented lower heart rate and higher SDRR, total power, and SD2 with respect to C57Bl/6, properties reversed by late sodium current inhibition. At ~24 mo, heart rate decreased in C57Bl/6 but increased in S571E, a condition preserved after autonomic blockade. Collectively, our data indicate that aging is associated with reduced HRV. Moreover, sodium channel function conditions heart rate and its age-related adaptations, but does not interfere with HRV decline occurring with age.NEW & NOTEWORTHY We have investigated age-associated alterations of heart rate properties in mice using conscious electrocardiographic recordings. Our findings support the notion that aging is coupled with altered sympathovagal balance with consequences on heart rate variability. Moreover, by using a genetically engineered mouse line, we provide evidence that sodium channels modulate heart rate and its age-related adaptations.


Subject(s)
Aging , Heart Rate , Heart/innervation , Periodicity , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Age Factors , Animals , Biological Clocks , Consciousness , Electrocardiography , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Restraint, Physical , Sinoatrial Node/innervation , Sinoatrial Node/metabolism , Time Factors
8.
Med Image Anal ; 55: 65-75, 2019 07.
Article in English | MEDLINE | ID: mdl-31026761

ABSTRACT

Integrating spatial information about atrial physiology and anatomy in a single patient from multimodal datasets, as well as generalizing these data across patients, requires a common coordinate system. In the atria, this is challenging due to the complexity and variability of the anatomy. We aimed to develop and validate a Universal Atrial Coordinate (UAC) system for the following applications: combination and assessment of multimodal data; comparison of spatial data across patients; 2D visualization; and construction of patient specific geometries to test mechanistic hypotheses. Left and right atrial LGE-MRI data were segmented and meshed. Two coordinates were calculated for each atrium by solving Laplace's equation, with boundary conditions assigned using five landmark points. The coordinate system was used to map spatial information between atrial meshes, including scalar fields measured using different mapping modalities, and atrial anatomic structures and fibre directions from a reference geometry. Average error in point transfer from a source mesh to a destination mesh and back again was less than 0.1 mm for the left atrium and 0.02 mm for the right atrium. Patient specific meshes were constructed using the coordinate system and phase singularity density maps from arrhythmia simulations were visualised in 2D. In conclusion, we have developed a universal atrial coordinate system allowing automatic registration of imaging and electroanatomic mapping data, 2D visualisation, and patient specific model creation.


Subject(s)
Anatomic Landmarks , Heart Atria/anatomy & histology , Heart Atria/diagnostic imaging , Magnetic Resonance Imaging , Contrast Media , Epicardial Mapping , Humans , Imaging, Three-Dimensional , Sensitivity and Specificity
9.
Biomed Signal Process Control ; 51: 30-41, 2019 May.
Article in English | MEDLINE | ID: mdl-31938034

ABSTRACT

The profile of the action potential (AP) of cardiomyocytes contributes to the modality of ventricular repolarization of the heart. Experimentally, the examination of the AP in isolated cardiomyocytes provides information on their electrical properties, adaptations to physiological and pathological conditions, and putative ionic mechanisms involved in the process. Currently, there are no available platforms for automated assessment of AP properties and standard methodologies restrict the examination of the AP repolarization to discrete, user-defined ranges, neglecting significant intervals of the electrical recovery. This study proposes two automatic methods to assess AP profile throughout the entire repolarization phase. One method is based on AP data inversion and direct extraction of patterns describing beat-to-beat dynamics. The second method is based on evolutive singular value decomposition (ESVD), which identifies common patterns in a series of consecutive APs. The two methodologies were employed to analyze electrical signals collected from cardiomyocites obtained from healthy mice and animals with diabetes, a condition associated with alterations of AP properties in cardiac cells. Our methodologies revealed that the duration of the early repolarization phase of the AP tended to become progressively longer during a stimulation train, whereas the late repolarization progressively shortened. Although this behavior was comparable in the two groups of cells, alterations in AP dynamics occurred at distinct repolarization levels, a feature highlighted by the ESVD approach. In conclusion, the proposed methodologies allow detailed, automatic analysis of the AP repolarization and identification of critical alterations occurring in the electrical behavior of myocytes under pathological conditions.

10.
Front Cardiovasc Med ; 5: 123, 2018.
Article in English | MEDLINE | ID: mdl-30280100

ABSTRACT

Idiopathic ventricular fibrillation (IVF) is the main cause of unexplained sudden cardiac death, particularly in young patients under the age of 35. IVF is a diagnosis of exclusion in patients who have survived a VF episode without any identifiable structural or metabolic causes despite extensive diagnostic testing. Genetic testing allows identification of a likely causative mutation in up to 27% of unexplained sudden deaths in children and young adults. In the majority of cases, VF is triggered by PVCs that originate from the Purkinje network. Ablation of VF triggers in this setting is associated with high rates of acute success and long-term freedom from VF recurrence. Recent studies demonstrate that a significant subset of IVF defined by negative comprehensive investigations, demonstrate in fact subclinical structural alterations. These localized myocardial alterations are identified by high density electrogram mapping, are of small size and are mainly located in the epicardium. As reentrant VF drivers are often colocated with regions of abnormal electrograms, this localized substrate can be shown to be mechanistically linked with VF. Such areas may represent an important target for ablation.

11.
Front Physiol ; 9: 1207, 2018.
Article in English | MEDLINE | ID: mdl-30246796

ABSTRACT

The mechanisms underlying atrial fibrillation (AF), the most common sustained cardiac rhythm disturbance, remain elusive. Atrial fibrosis plays an important role in the development of AF and rotor dynamics. Both electrical wavelength (WL) and the degree of atrial fibrosis change as AF progresses. However, their combined effect on rotor core location remains unknown. The aim of this study was to analyze the effects of WL change on rotor core location in both fibrotic and non-fibrotic atria. Three patient specific fibrosis distributions (total fibrosis content: 16.6, 22.8, and 19.2%) obtained from clinical imaging data of persistent AF patients were incorporated in a bilayer atrial computational model. Fibrotic effects were modeled as myocyte-fibroblast coupling + conductivity remodeling; structural remodeling; ionic current changes + conductivity remodeling; and combinations of these methods. To change WL, action potential duration (APD) was varied from 120 to 240ms, representing the range of clinically observed AF cycle length, by modifying the inward rectifier potassium current (IK1) conductance between 80 and 140% of the original value. Phase singularities (PSs) were computed to identify rotor core locations. Our results show that IK1 conductance variation resulted in a decrease of APD and WL across the atria. For large WL in the absence of fibrosis, PSs anchored to regions with high APD gradient at the center of the left atrium (LA) anterior wall and near the junctions of the inferior pulmonary veins (PVs) with the LA. Decreasing the WL induced more PSs, whose distribution became less clustered. With fibrosis, PS locations depended on the fibrosis distribution and the fibrosis implementation method. The proportion of PSs in fibrotic areas and along the borders varied with both WL and fibrosis modeling method: for patient one, this was 4.2-14.9% as IK1 varied for the structural remodeling representation, but 12.3-88.4% using the combination of structural remodeling with myocyte-fibroblast coupling. The degree and distribution of fibrosis and the choice of implementation technique had a larger effect on PS locations than the WL variation. Thus, distinguishing the fibrotic mechanisms present in a patient is important for interpreting clinical fibrosis maps to create personalized models.

12.
Front Physiol ; 9: 929, 2018.
Article in English | MEDLINE | ID: mdl-30065663

ABSTRACT

Background: The use of surface recordings to assess atrial fibrillation (AF) complexity is still limited in clinical practice. We propose a noninvasive tool to quantify AF complexity from body surface potential maps (BSPMs) that could be used to choose patients who are eligible for AF ablation and assess therapy impact. Methods: BSPMs (mean duration: 7 ± 4 s) were recorded with a 252-lead vest in 97 persistent AF patients (80 male, 64 ± 11 years, duration 9.6 ± 10.4 months) before undergoing catheter ablation. Baseline cycle length (CL) was measured in the left atrial appendage. The procedural endpoint was AF termination. The ablation strategy impact was defined in terms of number of regions ablated, radiofrequency delivery time to achieve AF termination, and acute outcome. The atrial fibrillatory wave signal extracted from BSPMs was divided in 0.5-s consecutive segments, each projected on a 3D subspace determined through principal component analysis (PCA) in the current frame. We introduced the nondipolar component index (NDI) that quantifies the fraction of energy retained after subtracting an equivalent PCA dipolar approximation of heart electrical activity. AF complexity was assessed by the NDI averaged over the entire recording and compared to ablation strategy. Results: AF terminated in 77 patients (79%), whose baseline AF CL was 177 ± 40 ms, whereas it was 157 ± 26 ms in patients with unsuccessful ablation outcome (p = 0.0586). Mean radiofrequency emission duration was 35 ± 21 min; 4 ± 2 regions were targeted. Long-lasting AF patients (≥12 months) exhibited higher complexity, with higher NDI values (≥12 months: 0.12 ± 0.04 vs. <12 months: 0.09 ± 0.03, p < 0.01) and short CLs (<160 ms: 0.12 ± 0.03 vs. between 160 and 180 ms: 0.10 ± 0.03 vs. >180 ms: 0.09 ± 0.03, p < 0.01). More organized AF as measured by lower NDI was associated with successful ablation outcome (termination: 0.10 ± 0.03 vs. no termination: 0.12 ± 0.04, p < 0.01), shorter procedures (<30 min: 0.09 ± 0.04 vs. ≥30 min: 0.11 ± 0.03, p < 0.001) and fewer ablation targets (<4: 0.09 ± 0.03 vs. ≥4: 0.11 ± 0.04, p < 0.01). Conclusions: AF complexity can be noninvasively quantified by PCA in BSPMs and correlates with ablation outcome and AF pathophysiology.

13.
PLoS Comput Biol ; 14(5): e1006166, 2018 05.
Article in English | MEDLINE | ID: mdl-29795549

ABSTRACT

Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success.


Subject(s)
Atrial Fibrillation/physiopathology , Computer Simulation , Fibrosis/physiopathology , Models, Cardiovascular , Pulmonary Veins/physiopathology , Action Potentials/physiology , Cardiac Electrophysiology , Catheter Ablation , Heart Atria/physiopathology , Humans
14.
Comput Biol Med ; 88: 126-131, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28715667

ABSTRACT

With the increasing prevalence of atrial fibrillation (AF), there is a strong clinical interest in determining whether a patient suffering from persistent AF will benefit from catheter ablation (CA) therapy at long term. This work presents several regression models based on noninvasive measures automatically computed from the standard 12-lead electrocardiogram (ECG) such as AF dominant frequency (DF), spectral concentration and spatiotemporal variability (STV). Sixty-two AF patients referred to CA were enrolled in this study. Forty-seven of them had no recurrence after CA during an average follow-up of 14 ± 8 months. The ECG features were extracted from an ECG recorded before the CA intervention and they were combined by means of logistic regression. The combination of DF and STV values from different precordial leads reached AUC = 0.939, outperforming the best results by using only one kind of features, such as DF (AUC = 0.801), and yielding a global accuracy of 93.5% for discriminating the best long-term responders to CA. These results point out the need to take into consideration the spatial variation of spectral ECG parameters to build predictive models dealing with AF.


Subject(s)
Atrial Fibrillation/physiopathology , Atrial Fibrillation/surgery , Catheter Ablation , Electrocardiography/methods , Aged , Algorithms , Analysis of Variance , Female , Humans , Logistic Models , Male , Middle Aged , ROC Curve , Signal Processing, Computer-Assisted , Treatment Outcome
15.
Am J Physiol Heart Circ Physiol ; 312(1): H150-H161, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27881388

ABSTRACT

Diabetes and other metabolic conditions characterized by elevated blood glucose constitute important risk factors for cardiovascular disease. Hyperglycemia targets myocardial cells rendering ineffective mechanical properties of the heart, but cellular alterations dictating the progressive deterioration of cardiac function with metabolic disorders remain to be clarified. In the current study, we examined the effects of hyperglycemia on cardiac function and myocyte physiology by employing mice with high blood glucose induced by administration of streptozotocin, a compound toxic to insulin-producing ß-cells. We found that hyperglycemia initially delayed the electrical recovery of the heart, whereas cardiac function became defective only after ~2 mo with this condition and gradually worsened with time. Prolonged hyperglycemia was associated with increased chamber dilation, thinning of the left ventricle (LV), and myocyte loss. Cardiomyocytes from hyperglycemic mice exhibited defective Ca2+ transients before the appearance of LV systolic defects. Alterations in Ca2+ transients involved enhanced spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), reduced cytoplasmic Ca2+ clearance, and declined SR Ca2+ load. These defects have important consequences on myocyte contraction, relaxation, and mechanisms of rate adaptation. Collectively, our data indicate that hyperglycemia alters intracellular Ca2+ homeostasis in cardiomyocytes, hindering contractile activity and contributing to the manifestation of the diabetic cardiomyopathy. NEW & NOTEWORTHY: We have investigated the effects of hyperglycemia on cardiomyocyte physiology and ventricular function. Our results indicate that defective Ca2+ handling is a critical component of the progressive deterioration of cardiac performance of the diabetic heart.


Subject(s)
Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Homeostasis , Hyperglycemia/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/physiopathology , Action Potentials , Animals , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Diabetes Mellitus, Experimental/complications , Echocardiography , Electrocardiography , Female , Isolated Heart Preparation , Male , Mice , Myocytes, Cardiac/drug effects , Patch-Clamp Techniques , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology
16.
Europace ; 18(suppl 4): iv146-iv155, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28011842

ABSTRACT

AIMS: Catheter ablation is an effective technique for terminating atrial arrhythmia. However, given a high atrial fibrillation (AF) recurrence rate, optimal ablation strategies have yet to be defined. Computer modelling can be a powerful aid but modelling of fibrosis, a major factor associated with AF, is an open question. Several groups have proposed methodologies based on imaging data, but no comparison to determine which methodology best corroborates clinically observed reentrant behaviour has been performed. We examined several methodologies to determine the best method for capturing fibrillation dynamics. METHODS AND RESULTS: Patient late gadolinium-enhanced magnetic resonance imaging data were transferred onto a bilayer atrial computer model and used to assign fibrosis distributions. Fibrosis was modelled as conduction disturbances (lower conductivity, edge splitting, or percolation), transforming growth factor-ß1 ionic channel effects, myocyte-fibroblast coupling, and combinations of the preceding. Reentry was induced through pulmonary vein ectopy and the ensuing rotor dynamics characterized. Non-invasive electrocardiographic imaging data of the patients in AF was used for comparison. Electrograms were computed and the fractionation durations measured over the surface. Edge splitting produced more phase singularities from wavebreaks than the other representations. The number of phase singularities seen with percolation was closer to the clinical values. Addition of fibroblast coupling had an organizing effect on rotor dynamics. Simple tissue conductivity changes with ionic changes localized rotors over fibrosis which was not observed with clinical data. CONCLUSION: The specific representation of fibrosis has a large effect on rotor dynamics and needs to be carefully considered for patient specific modelling.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Function , Electrophysiologic Techniques, Cardiac/methods , Heart Atria/physiopathology , Models, Cardiovascular , Patient-Specific Modeling , Action Potentials , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Electrocardiography , Fibrosis , Heart Atria/pathology , Heart Rate , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Prognosis , Signal Processing, Computer-Assisted
17.
Arch Cardiovasc Dis ; 109(12): 679-688, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27402153

ABSTRACT

BACKGROUND: Catheter ablation (CA) of persistent atrial fibrillation (AF) is challenging, and reported results are capable of improvement. A better patient selection for the procedure could enhance its success rate while avoiding the risks associated with ablation, especially for patients with low odds of favorable outcome. CA outcome can be predicted non-invasively by atrial fibrillatory wave (f-wave) amplitude, but previous works focused mostly on manual measures in single electrocardiogram (ECG) leads only. AIM: To assess the long-term prediction ability of f-wave amplitude when computed in multiple ECG leads. METHODS: Sixty-two patients with persistent AF (52 men; mean age 61.5±10.4years) referred for CA were enrolled. A standard 1-minute 12-lead ECG was acquired before the ablation procedure for each patient. F-wave amplitudes in different ECG leads were computed by a non-invasive signal processing algorithm, and combined into a mutivariate prediction model based on logistic regression. RESULTS: During an average follow-up of 13.9±8.3months, 47 patients had no AF recurrence after ablation. A lead selection approach relying on the Wald index pointed to I, V1, V2 and V5 as the most relevant ECG leads to predict jointly CA outcome using f-wave amplitudes, reaching an area under the curve of 0.854, and improving on single-lead amplitude-based predictors. CONCLUSION: Analysing the f-wave amplitude in several ECG leads simultaneously can significantly improve CA long-term outcome prediction in persistent AF compared with predictors based on single-lead measures.


Subject(s)
Algorithms , Atrial Fibrillation/surgery , Catheter Ablation/methods , Electrocardiography/methods , Heart Atria/physiopathology , Heart Conduction System/surgery , Ventricular Function, Left/physiology , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Female , Heart Atria/diagnostic imaging , Heart Conduction System/physiopathology , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Prognosis , Tomography, X-Ray Computed , Treatment Outcome
18.
J Am Heart Assoc ; 5(2)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26896476

ABSTRACT

BACKGROUND: Diabetes is associated with prolongation of the QT interval of the electrocardiogram and enhanced dispersion of ventricular repolarization, factors that, together with atherosclerosis and myocardial ischemia, may promote the occurrence of electrical disorders. Thus, we tested the possibility that alterations in transmembrane ionic currents reduce the repolarization reserve of myocytes, leading to action potential (AP) prolongation and enhanced beat-to-beat variability of repolarization. METHODS AND RESULTS: Diabetes was induced in mice with streptozotocin (STZ), and effects of hyperglycemia on electrical properties of whole heart and myocytes were studied with respect to an untreated control group (Ctrl) using electrocardiographic recordings in vivo, ex vivo perfused hearts, and single-cell patch-clamp analysis. Additionally, a newly developed algorithm was introduced to obtain detailed information of the impact of high glucose on AP profile. Compared to Ctrl, hyperglycemia in STZ-treated animals was coupled with prolongation of the QT interval, enhanced temporal dispersion of electrical recovery, and susceptibility to ventricular arrhythmias, defects observed, in part, in the Akita mutant mouse model of type I diabetes. AP was prolonged and beat-to-beat variability of repolarization was enhanced in diabetic myocytes, with respect to Ctrl cells. Density of Kv K(+) and L-type Ca(2+) currents were decreased in STZ myocytes, in comparison to cells from normoglycemic mice. Pharmacological reduction of Kv currents in Ctrl cells lengthened AP duration and increased temporal dispersion of repolarization, reiterating features identified in diabetic myocytes. CONCLUSIONS: Reductions in the repolarizing K(+) currents may contribute to electrical disturbances of the diabetic heart.


Subject(s)
Action Potentials , Algorithms , Arrhythmias, Cardiac/etiology , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/etiology , Heart Rate , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Potassium/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Electrocardiography , Female , Kinetics , Male , Mice, Inbred C57BL , Patch-Clamp Techniques , Signal Processing, Computer-Assisted
19.
Am J Physiol Heart Circ Physiol ; 310(7): H873-90, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26801307

ABSTRACT

Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.


Subject(s)
Action Potentials , Aging/physiology , Myocytes, Cardiac/physiology , Ventricular Function , Animals , Dogs , Female , Hemodynamics , Male
20.
Bioengineering (Basel) ; 3(4)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-28952588

ABSTRACT

A robust and numerically-efficient method based on two moving average filters, followed by a dynamic event-related threshold, has been developed to detect P and T waves in electrocardiogram (ECG) signals as a proof-of-concept. Detection of P and T waves is affected by the quality and abnormalities in ECG recordings; the proposed method can detect P and T waves simultaneously through a unique algorithm despite these challenges. The algorithm was tested on arrhythmic ECG signals extracted from the MIT-BIH arrhythmia database with 21,702 beats. These signals typically suffer from: (1) non-stationary effects; (2) low signal-to-noise ratio; (3) premature atrial complexes; (4) premature ventricular complexes; (5) left bundle branch blocks; and (6) right bundle branch blocks. Interestingly, our algorithm obtained a sensitivity of 98.05% and a positive predictivity of 97.11% for P waves, and a sensitivity of 99.86% and a positive predictivity of 99.65% for T waves. These results, combined with the simplicity of the method, demonstrate that an efficient and simple algorithm can suit portable, wearable, and battery-operated ECG devices.

SELECTION OF CITATIONS
SEARCH DETAIL