Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Cancer Cell ; 40(12): 1600-1618.e10, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36423635

ABSTRACT

The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTßR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1- and PD1+TCF1+ CD8 T cell progenitors that differentiate into GrzB+PD1+ CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Venules/pathology , Immunotherapy , Lymph Nodes , Neoplasms/pathology
3.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33589525

ABSTRACT

BACKGROUND: Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker. METHODS: We employed single-cell RNA-sequencing in a mouse model of non-small cell lung carcinoma (NSCLC) to obtain a comprehensive overview of the tumor-infiltrating T-cell compartment, with a focus on ti-Treg subpopulations. These findings were validated by flow cytometric analysis of both mouse (LLC-OVA, MC38 and B16-OVA) and human (NSCLC and melanoma) tumor samples. We generated two CCR8-specific nanobodies (Nbs) that recognize distinct epitopes on the CCR8 extracellular domain. These Nbs were formulated as tetravalent Nb-Fc fusion proteins for optimal CCR8 binding and blocking, containing either an antibody-dependent cell-mediated cytotoxicity (ADCC)-deficient or an ADCC-prone Fc region. The therapeutic use of these Nb-Fc fusion proteins was evaluated, either as monotherapy or as combination therapy with anti-programmed cell death protein-1 (anti-PD-1), in both the LLC-OVA and MC38 mouse models. RESULTS: We were able to discern two ti-Treg populations, one of which is characterized by the unique expression of Ccr8 in conjunction with Treg activation markers. Ccr8 is also expressed by dysfunctional CD4+ and CD8+ T cells, but the CCR8 protein was only prominent on the highly activated and strongly T-cell suppressive ti-Treg subpopulation of mouse and human tumors, with no major CCR8-positivity found on peripheral Tregs. CCR8 expression resulted from TCR-mediated Treg triggering in an NF-κB-dependent fashion, but was not essential for the recruitment, activation nor suppressive capacity of these cells. While treatment of tumor-bearing mice with a blocking ADCC-deficient Nb-Fc did not influence tumor growth, ADCC-prone Nb-Fc elicited antitumor immunity and reduced tumor growth in synergy with anti-PD-1 therapy. Importantly, ADCC-prone Nb-Fc specifically depleted ti-Tregs in a natural killer (NK) cell-dependent fashion without affecting peripheral Tregs. CONCLUSIONS: Collectively, our findings highlight the efficacy and safety of targeting CCR8 for the depletion of tumor-promoting ti-Tregs in combination with anti-PD-1 therapy.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Lewis Lung/therapy , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lymphocyte Depletion , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, CCR8/deficiency , Skin Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/metabolism , Combined Modality Therapy , Databases, Genetic , Female , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Phenotype , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq , Receptors, CCR8/genetics , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , T-Lymphocytes, Regulatory/metabolism
4.
Nat Cancer ; 1(12): 1153-1166, 2020 12.
Article in English | MEDLINE | ID: mdl-33644766

ABSTRACT

Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity. Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo. Pre-clinical evaluation of an anti-human CD25 (RG6292) antibody with equivalent features demonstrates, in both non-human primates and humanized mouse models, efficient Treg depletion with no overt immune-related toxicities. Our data supports the clinical development of RG6292 and evaluation of novel combination therapies incorporating non-IL-2 blocking anti-CD25 antibodies in clinical studies.


Subject(s)
Interleukin-2 , Neoplasms , Animals , Antibodies, Monoclonal/pharmacology , Interleukin-2/pharmacology , Mice , Signal Transduction , T-Lymphocytes, Regulatory
5.
J Biol Chem ; 288(41): 29562-72, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23979133

ABSTRACT

The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced ß-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.


Subject(s)
Head and Neck Neoplasms/immunology , Receptors, CXCR/immunology , Single-Domain Antibodies/immunology , Xenograft Model Antitumor Assays , Animals , Arrestins/immunology , Arrestins/metabolism , Binding, Competitive/immunology , Camelids, New World/immunology , Cell Line, Tumor , Chemokine CXCL12/pharmacology , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/prevention & control , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Radioligand Assay , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/immunology , Single-Domain Antibodies/pharmacology , Tumor Burden/drug effects , Tumor Burden/immunology , beta-Arrestins
6.
PLoS One ; 6(10): e26299, 2011.
Article in English | MEDLINE | ID: mdl-22022593

ABSTRACT

The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.


Subject(s)
Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/metabolism , Receptors, Polymeric Immunoglobulin/metabolism , Transcytosis , Animals , Caco-2 Cells , Camelids, New World , Cell Polarity , Dogs , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epitope Mapping , Humans , Protein Binding , Reproducibility of Results
7.
Int J Alzheimers Dis ; 20102010 Sep 02.
Article in English | MEDLINE | ID: mdl-20862386

ABSTRACT

The APP[V717I] London (APP-Ld) mouse model recapitulates important pathological and clinical hallmarks of Alzheimer's disease (AD) and is therefore a valuable paradigm for evaluating therapeutic candidates. Historically, both the parenchymal and vascular amyloid deposits, and more recently, truncated and pyroglutamate-modified Abeta(3(pE)-42) species, are perceived as important hallmarks of AD-pathology. Late stage symptoms are preceded by robust deficits in orientation and memory that correlate in time with Abeta oligomerization and GSK3ß-mediated phosphorylation of endogenous murine Tau, all markers that have gained considerable interest during the last decade. Clinical parallels with AD patients and the value of the APP-Ld transgenic mouse model for preclinical in vivo testing of candidate drugs are discussed.

8.
J Alzheimers Dis ; 20(4): 1119-32, 2010.
Article in English | MEDLINE | ID: mdl-20413872

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARgamma) activation results in an increased rate of amyloid-beta (Abeta) clearance from the media of diverse cells in culture, including primary neurons and glial cells. Here, we further investigate the mechanism for Abeta clearance and found that PPARgamma activation modulates a cell surface metalloprotease that can be inhibited by metalloprotease inhibitors, like EDTA and phenanthroline, and also by the peptide hormones insulin and glucagon. The metalloprotease profile of the Abeta-degrading mechanism is surprisingly similar to insulin-degrading enzyme (IDE). This mechanism is maintained in hippocampal and glia primary cultures from IDE loss-of-function mice. We conclude that PPARgamma activates an IDE-like Abeta degrading activity. Our work suggests a drugable pathway that can clear Abeta peptide from the brain.


Subject(s)
Amyloid beta-Peptides/metabolism , Insulysin/metabolism , PPAR gamma/pharmacology , Animals , Biotinylation , Caveolins/pharmacology , Cells, Cultured , Clathrin/pharmacology , Down-Regulation/drug effects , Electrophoresis, Polyacrylamide Gel , Endocytosis/drug effects , Epitopes , Female , Glucagon/pharmacology , Insulysin/genetics , Membrane Proteins/metabolism , Metalloproteases/metabolism , Mice , Mice, Knockout , Neprilysin/genetics , Neprilysin/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Phenanthrolines/pharmacology , Plasmids/genetics , Pregnancy , RNA, Small Interfering/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
9.
Science ; 323(5916): 946-51, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19213921

ABSTRACT

Deposition of the amyloid-beta peptide is a pathological hallmark of Alzheimer's disease. A high-throughput functional genomics screen identified G protein-coupled receptor 3 (GPR3), a constitutively active orphan G protein-coupled receptor, as a modulator of amyloid-beta production. Overexpression of GPR3 stimulated amyloid-beta production, whereas genetic ablation of GPR3 prevented accumulation of the amyloid-beta peptide in vitro and in an Alzheimer's disease mouse model. GPR3 expression led to increased formation and cell-surface localization of the mature gamma-secretase complex in the absence of an effect on Notch processing. GPR3 is highly expressed in areas of the normal human brain implicated in Alzheimer's disease and is elevated in the sporadic Alzheimer's disease brain. Thus, GPR3 represents a potential therapeutic target for the treatment of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/biosynthesis , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Adult , Aged , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , Humans , Male , Mice , Middle Aged , Protein Structure, Tertiary , Receptors, Notch/metabolism , Signal Transduction
10.
J Neurosci ; 24(48): 10908-17, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15574741

ABSTRACT

We investigated whether peroxisome proliferator-activated receptor gamma (PPARgamma) could be involved in the modulation of the amyloid cascade causing Alzheimer's disease. Inducing expression or activating PPARgamma using synthetic agonists of the thiazolinedione family results in a dramatic decrease in the levels of the amyloid-beta (Abeta) peptide in the conditioned medium of neuronal and non-neuronal cells. PPARgamma does not affect expression or activity of any of the secretases involved in the generation of the Abeta peptide but induces a fast, cell-bound clearing mechanism responsible for the removal of the Abeta peptide from the medium. Although PPARgamma expression is generally low in the CNS, induction of PPARgamma expression during inflammation could be beneficial for inducing Abeta clearance. We confirm that the Abeta clearance mechanism can indeed be induced by PPARgamma activation in primary murine-mixed glia and cortical neuronal cultures. Our results suggest that PPARgamma-controlled mechanisms should be explored further as potential drug targets for Alzheimer's disease treatment.


Subject(s)
Amyloid beta-Peptides/metabolism , Chromans/pharmacology , Neuroglia/drug effects , Neurons/drug effects , PPAR gamma/physiology , Thiazolidinediones/pharmacology , Amyloid Precursor Protein Secretases , Anilides/pharmacology , Animals , Aspartic Acid Endopeptidases , Cell Line/drug effects , Cell Line/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Cerebral Cortex/cytology , Culture Media, Conditioned/chemistry , Endopeptidases/analysis , Endopeptidases/metabolism , Humans , Kidney , Mice , Neuroblastoma/pathology , Neuroglia/metabolism , Neurons/metabolism , PPAR gamma/agonists , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Peptide Fragments/metabolism , Pioglitazone , Protein Processing, Post-Translational/drug effects , Receptor, Notch1 , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/agonists , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/physiology , Retinoid X Receptors/drug effects , Rosiglitazone , Transcription Factors/metabolism , Tretinoin/pharmacology , Troglitazone
11.
J Biol Chem ; 278(44): 43430-6, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-12885769

ABSTRACT

The Presenilins are part of the gamma-secretase complex that is involved in the regulated intramembrane proteolysis of amyloid precursor protein and other type I integral membrane proteins. Nicastrin, Pen-2, and Aph1 are the other proteins of this complex. The Presenilins probably contribute the catalytic activity to the protease complex. However, several investigators reported normal Abeta-peptide generation in cells expressing Presenilins mutated at the putative catalytic site residue Asp-257, contradicting this hypothesis. Because endogenously expressed wild type Presenilin could contribute to residual gamma-secretase activity in these experiments, we have reinvestigated the problem by expressing mutated Presenilins in a Presenilin-negative cell line. We confirm that Presenilins with mutated Asp residues are catalytically inactive. Unexpectedly, these mutated Presenilins are still partially processed into amino- and carboxyl-terminal fragments by a "Presenilinase"-like activity. They are also able to rescue Pen-2 expression and Nicastrin glycosylation in Presenilin-negative cells and become incorporated into large approximately 440-kDa complexes as assessed by blue native gel electrophoresis. Our study demonstrates that the catalytic activity of Presenilin and its other functions in the generation, stabilization, and transport of the gamma-secretase complex can be separated and extends the concept that Presenilins are multifunctional proteins.


Subject(s)
Aspartic Acid/chemistry , Membrane Glycoproteins/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/physiology , Mutation , Adenoviridae/genetics , Amyloid Precursor Protein Secretases , Animals , Catalysis , Cell Line , Cell Membrane/metabolism , Cell-Free System , Electrophoresis, Polyacrylamide Gel , Fibroblasts/metabolism , Glycosylation , Humans , Membrane Proteins/genetics , Mice , Models, Genetic , Presenilin-1 , Presenilin-2 , Transfection
12.
Nat Biotechnol ; 20(11): 1154-7, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12355097

ABSTRACT

With the publication of the sequence of the human genome, we are challenged to identify the functions of an estimated 70,000 human genes and the much larger number of proteins encoded by these genes. Of particular interest is the identification of gene products that play a role in human disease pathways, as these proteins include potential new targets that may lead to improved therapeutic strategies. This requires the direct measurement of gene function on a genomic scale in cell-based, functional assays. We have constructed and validated an individually arrayed, replication-defective adenoviral library harboring human cDNAs, termed PhenoSelect library. The adenoviral vector guarantees efficient transduction of diverse cell types, including primary cells. The arrayed format allows screening of this library in a variety of cellular assays in search for gene(s) that, by overexpression, induce a particular disease-related phenotype. The great majority of phenotypic assays, including morphological assays, can be screened with arrayed libraries. In contrast, pooled-library approaches often rely on phenotype-based isolation or selection of single cells by employing a flow cytometer or screening for cell survival. An arrayed placental PhenoSelect library was screened in cellular assays aimed at identifying regulators of osteogenesis, metastasis, and angiogenesis. This resulted in the identification of known regulators, as well as novel sequences that encode proteins hitherto not known to play a role in these pathways. These results establish the value of the PhenoSelect platform, in combination with cellular screens, for gene function discovery.


Subject(s)
Adenoviridae/genetics , Gene Expression Regulation, Viral , Gene Library , Genome, Human , Animals , Cell Line , Dogs , Epithelium/physiology , Epithelium/virology , Feasibility Studies , Female , HeLa Cells/physiology , HeLa Cells/virology , Humans , Kidney/physiology , Kidney/virology , Neovascularization, Physiologic/genetics , Oligonucleotide Array Sequence Analysis/methods , Osteoblasts/physiology , Osteoblasts/virology , Placenta/physiology , Placenta/virology , Pregnancy , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...