Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Neurooncol ; 160(3): 649-658, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36454373

ABSTRACT

PURPOSE: Brain metastases (BM) themselves and treatment with stereotactic radiosurgery (SRS) can influence neurocognitive functioning. This prospective study aimed to assess neurocognitive decline in patients with BM after SRS. METHODS: A neuropsychological test battery was assessed yielding ten test outcomes. Neurocognitive decline at 3 and 6 months post SRS was compared to measurement prior to Gamma Knife (GK) or linear accelerator (LINAC) SRS. Reliable change indices with correction for practice effects were calculated to determine the percentage of neurocognitive decline (defined as decline on ≥ 2 test outcomes). Risk factors of neurocognitive decline were analyzed with binary logistic regression. RESULTS: Of 194 patients pre-SRS, 40 GK and 29 LINAC patients had data accessible at 6 months. Compared to baseline, 38% of GK patients declined at 3 months, and 23% declined at 6 months. GK patients declined on attention, executive functioning, verbal memory, and fine motor skill. Of LINAC patients, 10% declined at 3 months, and 24% at 6 months. LINAC patients declined on executive functioning, verbal memory, and fine motor skills. Risk factors of neurocognitive decline at 3 months were high age, low education level and type of SRS (GK or LINAC). At 6 months, high age was a risk factor. Karnofsky Performance Scale, BM volume, number of BM, tumor progression and neurocognitive impairment pre-SRS were no risk factors. CONCLUSION: Neurocognitive decline occurs in a considerable proportion of patients with BM treated with GK or LINAC SRS. Overall, high age appears to be a risk factor for neurocognitive decline after SRS.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/adverse effects , Prospective Studies , Retrospective Studies , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/secondary , Particle Accelerators , Treatment Outcome
2.
Phys Imaging Radiat Oncol ; 23: 24-31, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35923896

ABSTRACT

Background and purpose: Central lung tumours can be treated by magnetic resonance (MR)-guided radiotherapy. Complications might be reduced by decreasing the Planning Target Volume (PTV) using mid-position (midP)-based planning instead of Internal Target Volume (ITV)-based planning. In this study, we aimed to verify a method to automatically derive patient-specific PTV margins for midP-based planning, and show dosimetric robustness of midP-based planning for a 1.5T MR-linac. Materials and methods: Central(n = 12) and peripheral(n = 4) central lung tumour cases who received 8x7.5 Gy were included. A midP-image was reconstructed from ten phases of the 4D-Computed Tomography using deformable image registration. The Gross Tumor Volume (GTV) was delineated on the midP-image and the PTV margin was automatically calculated based on van Herk's margin recipe, treating the standard deviation of all Deformation Vector Fields, within the GTV, as random error component. Dosimetric robustness of midP-based planning for MR-linac using automatically derived margins was verified by 4D dose-accumulation. MidP-based plans were compared to ITV-based plans. Automatically derived margins were verified with manually derived margins. Results: The mean D95% target coverage in GTV + 2 mm was 59.9 Gy and 62.0 Gy for midP- and ITV-based central lung plans, respectively. The mean lung dose was significantly lower for midP-based treatment plans (difference:-0.3 Gy; p < 0.042 ). Automatically derived margins agreed within one millimeter with manually derived margins. Conclusions: This retrospective study indicates that mid-position-based treatment plans for central lung Stereotactic Body Radiation Therapy yield lower OAR doses compared to ITV-based treatment plans on the MR-linac. Patient-specific GTV-to-PTV margins can be derived automatically and result in clinically acceptable target coverage.

3.
Breast J ; 24(4): 501-508, 2018 07.
Article in English | MEDLINE | ID: mdl-29286193

ABSTRACT

There is growing interest in minimally invasive breast cancer therapy. Eligibility of patients is, however, dependent on several factors related to the tumor and treatment technology. The aim of this study is to assess the proportion of patients eligible for minimally invasive breast cancer therapy for different safety and treatment margins based on breast tumor location. Patients with invasive ductal cancer were selected from the MARGINS cohort. Semiautomatic segmentation of tumor, skin, and pectoral muscle was performed in Magnetic Resonance images. Shortest distances of tumors to critical organs (ie, skin and pectoral muscle) were calculated. Proportions of eligible patients were determined for different safety and treatment margins. Three-hundred-forty-eight patients with 351 tumors were included. If a 10 mm safety margin to skin and pectoral muscle is required without treatment margin, 72.3% of patients would be eligible for minimally invasive treatment. This proportion decreases to 45.9% for an additional treatment margin of 5 mm. Shortest distances between tumors and critical organs are larger in older patients and in patients with less aggressive tumor subtypes. If a 10 mm safety margin to skin and pectoral muscle is required, more than two-thirds of patients would be eligible for minimally invasive breast cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Margins of Excision , Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Ductal, Breast/surgery , Female , Humans , Magnetic Resonance Imaging/methods , Mastectomy, Segmental/methods , Middle Aged , Neoplasm Grading , Pectoralis Muscles/diagnostic imaging , Skin/diagnostic imaging
4.
Eur Radiol ; 26(11): 4037-4046, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26852219

ABSTRACT

OBJECTIVES: To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. METHODS: Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. RESULTS: Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). CONCLUSIONS: Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. KEY POINTS: • MR-HIFU ablation with the dedicated breast system is safe and feasible • In none of the patients was skin redness or burns observed • No correlation was found between the applied energy and the temperature increase • The correlation between applied energy and size of tumour necrosis was good.


Subject(s)
Breast Neoplasms/surgery , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging, Interventional/methods , Breast/pathology , Breast/surgery , Breast Neoplasms/pathology , Feasibility Studies , Female , Humans , Middle Aged , Treatment Outcome
5.
Histopathology ; 69(2): 250-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26732321

ABSTRACT

AIMS: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation and radiofrequency ablation (RFA) are being researched as possible substitutes for surgery in breast cancer patients. The histopathological appearance of ablated tissue has not been studied in great detail. This study aimed to compare histopathological features of breast cancer after MR-HIFU ablation and RFA. METHODS AND RESULTS: MR-HIFU ablation and RFA were performed in- and ex-vivo. Tumours in six mastectomy specimens were partially ablated with RFA or MR-HIFU. In-vivo MR-HIFU ablation was performed 3-6 days before excision; RFA was performed in the operation room. Tissue was fixed in formalin and processed to haematoxylin and eosin (H&E) and cytokeratin-8 (CK-8)-stained slides. Morphology and cell viability were assessed. Ex-vivo ablation resulted in clear morphological changes after RFA versus subtle differences after MR-HIFU. CK-8 staining was decreased or absent. H&E tended to underestimate the size of thermal damage. In-vivo MR-HIFU resulted in necrotic-like changes. Surprisingly, some ablated lesions were CK-8-positive. Histopathology after in-vivo RFA resembled ex-vivo RFA, with hyper-eosinophilic stroma and elongated nuclei. Lesion borders were sharp after MR-HIFU and indistinct after RFA. CONCLUSION: Histopathological differences between MR-HIFU-ablated tissue and RF-ablated tissue were demonstrated. CK-8 was more reliable for cell viability assessment than H&E when used directly after ablation, while H&E was more reliable in ablated tissue left in situ for a few days. Our results contribute to improved understanding of histopathological features in breast cancer lesions treated with minimally invasive ablative techniques.


Subject(s)
Breast Neoplasms/pathology , Keratin-8/metabolism , Ablation Techniques , Breast/diagnostic imaging , Breast/pathology , Breast/surgery , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Female , High-Intensity Focused Ultrasound Ablation , Humans , Magnetic Resonance Imaging , Mastectomy , Surgery, Computer-Assisted
6.
PLoS One ; 9(4): e94233, 2014.
Article in English | MEDLINE | ID: mdl-24713637

ABSTRACT

OBJECTIVE: To investigate the added diagnostic value of 3.0 Tesla breast MRI over conventional breast imaging in the diagnosis of in situ and invasive breast cancer and to explore the role of routine versus expert reading. MATERIALS AND METHODS: We evaluated MRI scans of patients with nonpalpable BI-RADS 3-5 lesions who underwent dynamic contrast-enhanced 3.0 Tesla breast MRI. Initially, MRI scans were read by radiologists in a routine clinical setting. All histologically confirmed index lesions were re-evaluated by two dedicated breast radiologists. Sensitivity and specificity for the three MRI readings were determined, and the diagnostic value of breast MRI in addition to conventional imaging was assessed. Interobserver reliability between the three readings was evaluated. RESULTS: MRI examinations of 207 patients were analyzed. Seventy-eight of 207 (37.7%) patients had a malignant lesion, of which 33 (42.3%) patients had pure DCIS and 45 (57.7%) invasive breast cancer. Sensitivity of breast MRI was 66.7% during routine, and 89.3% and 94.7% during expert reading. Specificity was 77.5% in the routine setting, and 61.0% and 33.3% during expert reading. In the routine setting, MRI provided additional diagnostic information over clinical information and conventional imaging, as the Area Under the ROC Curve increased from 0.76 to 0.81. Expert MRI reading was associated with a stronger improvement of the AUC to 0.87. Interobserver reliability between the three MRI readings was fair and moderate. CONCLUSIONS: 3.0 T breast MRI of nonpalpable breast lesions is of added diagnostic value for the diagnosis of in situ and invasive breast cancer.


Subject(s)
Breast Neoplasms/diagnosis , Magnetic Resonance Imaging , Adult , Aged , Biopsy, Large-Core Needle , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Mammography , Middle Aged , ROC Curve , Reproducibility of Results , Sensitivity and Specificity , Tumor Burden
7.
Magn Reson Med ; 72(6): 1580-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24347129

ABSTRACT

PURPOSE: In this study, we aim to demonstrate the sensitivity of proton resonance frequency shift (PRFS) -based thermometry to heat-induced magnetic susceptibility changes and to present and evaluate a model-based correction procedure. THEORY AND METHODS: To demonstrate the expected temperature effect, field disturbances during high intensity focused ultrasound sonications were monitored in breast fat samples with a three-dimensional (3D) gradient echo sequence. To evaluate the correction procedure, the interface of tissue-mimicking ethylene glycol gel and fat was sonicated. During sonication, the temperature was monitored with a 2D dual flip angle multi-echo gradient echo sequence, allowing for PRFS-based relative and referenced temperature measurements in the gel and T1 -based temperature measurements in fat. The PRFS-based measurement in the gel was corrected by minimizing the discrepancy between the observed 2D temperature profile and the profile predicted by a 3D thermal model. RESULTS: The HIFU sonications of breast fat resulted in a magnetic field disturbance which completely disappeared after cooling. For the correction method, the 5th to 95th percentile interval of the PRFS-thermometry error in the gel decreased from 3.8°C before correction to 2.0-2.3°C after correction. CONCLUSION: This study has shown the effects of magnetic susceptibility changes induced by heating of breast fatty tissue samples. The resultant errors can be reduced by the use of a model-based correction procedure.


Subject(s)
Adipose Tissue/physiology , Adipose Tissue/surgery , Artifacts , Body Temperature/physiology , High-Intensity Focused Ultrasound Ablation/methods , Magnetic Resonance Imaging/methods , Thermography/methods , Adipose Tissue/radiation effects , Algorithms , Body Temperature/radiation effects , Breast/physiology , Breast/surgery , Diagnostic Errors , Dose-Response Relationship, Radiation , High-Energy Shock Waves , Hot Temperature , Humans , In Vitro Techniques , Mastectomy/methods , Medical Errors , Protons , Reproducibility of Results , Sensitivity and Specificity
8.
Eur J Pharmacol ; 717(1-3): 21-30, 2013 Oct 05.
Article in English | MEDLINE | ID: mdl-23583321

ABSTRACT

Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of breast tumors.


Subject(s)
Breast/cytology , Breast/surgery , Cadaver , High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging , Surgery, Computer-Assisted , Aged, 80 and over , Female , Humans , Temperature
9.
Cardiovasc Intervent Radiol ; 36(2): 292-301, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23232856

ABSTRACT

Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.


Subject(s)
Breast Neoplasms/surgery , High-Intensity Focused Ultrasound Ablation , Magnetic Resonance Imaging, Interventional , Contrast Media/administration & dosage , Equipment Design , Female , Humans , Imaging, Three-Dimensional , Patient Selection
11.
J Magn Reson Imaging ; 34(2): 254-61, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21780220

ABSTRACT

The treatment of patients with localized breast cancer has changed considerably over the past few decades. The next challenge is to use image-guided minimally invasive tumor ablation techniques. The fact that MRI is the most accurate imaging modality for visualization and delineation of breast tumor margins in three dimensions and provides MRI-based temperature mapping, makes it particularly applicable for monitoring during minimally invasive ablation techniques. The overall result of the studies performed on MRI-guided minimally invasive tumor ablation studies are varying, with reported total tumor ablation rates ranging between 20% and 100%. Strict selection of patients, consensus on the treatment zone margin and optimization of MR-imaging, should make MRI-guided breast cancer tumor ablation a useful tool in clinical practice.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/therapy , Magnetic Resonance Imaging, Interventional/methods , Magnetic Resonance Imaging/methods , Breast/pathology , Catheter Ablation/methods , Equipment Design , Female , Humans , Hyperthermia, Induced/methods , Lasers , Minimally Invasive Surgical Procedures/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...