Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
J Med Chem ; 65(18): 12386-12402, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36069672

ABSTRACT

An imidazolone → triazolone replacement addressed the limited passive permeability of a series of protein arginine methyl transferase 5 (PRMT5) inhibitors. This increase in passive permeability was unexpected given the increase in the hydrogen bond acceptor (HBA) count and topological polar surface area (TPSA), two descriptors that are typically inversely correlated with permeability. Quantum mechanics (QM) calculations revealed that this unusual effect was due to an electronically driven disconnect between TPSA and 3D-PSA, which manifests in a reduction in overall HBA strength as indicated by the HBA moment descriptor from COSMO-RS (conductor-like screening model for real solvation). HBA moment was subsequently deployed as a design parameter leading to the discovery of inhibitors with not only improved passive permeability but also reduced P-glycoprotein (P-gp) transport. Our case study suggests that hidden polarity as quantified by TPSA-3DPSA can be rationally designed through QM calculations.


Subject(s)
Arginine , Prostate-Specific Antigen , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Humans , Male , Permeability , Prostate-Specific Antigen/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Transferases/metabolism
2.
ACS Med Chem Lett ; 10(11): 1524-1529, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749905

ABSTRACT

Small molecules that inhibit the metabolic enzyme NAMPT have emerged as potential therapeutics in oncology. As part of our effort in this area, we took a scaffold morphing approach and identified 3-pyridyl azetidine ureas as a potent NAMPT inhibiting motif. We explored the SAR of this series, including 5 and 6 amino pyridines, using a convergent synthetic strategy. This lead optimization campaign yielded multiple compounds with excellent in vitro potency and good ADME properties that culminated in compound 27.

3.
Nat Chem Biol ; 15(7): 666-668, 2019 07.
Article in English | MEDLINE | ID: mdl-31209353

ABSTRACT

The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.


Subject(s)
Complement C5/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Complement C5/metabolism , Humans , Molecular Conformation , Small Molecule Libraries/chemistry
4.
J Biol Chem ; 293(52): 20137-20156, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30389787

ABSTRACT

Myocilin (MYOC) was discovered more than 20 years ago and is the gene whose mutations are most commonly observed in individuals with glaucoma. Despite extensive research efforts, the function of WT MYOC has remained elusive, and how mutant MYOC is linked to glaucoma is unclear. Mutant MYOC is believed to be misfolded within the endoplasmic reticulum, and under normal physiological conditions misfolded MYOC should be retro-translocated to the cytoplasm for degradation. To better understand mutant MYOC pathology, we CRISPR-engineered a rat to have a MYOC Y435H substitution that is the equivalent of the pathological human MYOC Y437H mutation. Using this engineered animal model, we discovered that the chaperone αB-crystallin (CRYAB) is a MYOC-binding partner and that co-expression of these two proteins increases protein aggregates. Our results suggest that the misfolded mutant MYOC aggregates with cytoplasmic CRYAB and thereby compromises protein clearance mechanisms in trabecular meshwork cells, and this process represents the primary mode of mutant MYOC pathology. We propose a model by which mutant MYOC causes glaucoma, and we propose that therapeutic treatment of patients having a MYOC mutation may focus on disrupting the MYOC-CRYAB complexes.


Subject(s)
Cytoskeletal Proteins/metabolism , Eye Proteins/metabolism , Glaucoma/metabolism , Glycoproteins/metabolism , Mutation, Missense , Trabecular Meshwork/metabolism , alpha-Crystallin B Chain/metabolism , Amino Acid Substitution , Animals , Crystallins/genetics , Crystallins/metabolism , Cytoskeletal Proteins/genetics , Disease Models, Animal , Eye Proteins/genetics , Female , Glaucoma/genetics , Glaucoma/pathology , Glycoproteins/genetics , Humans , Male , Mice, Mutant Strains , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Binding , Rats, Sprague-Dawley , Trabecular Meshwork/pathology , alpha-Crystallin B Chain/genetics
5.
ACS Med Chem Lett ; 9(8): 838-842, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30128077

ABSTRACT

Antibody-drug conjugates (ADCs) are a novel modality that allows targeted delivery of potent therapeutic agents to the desired site. Herein we report our discovery of NAMPT inhibitors as a novel nonantimitotic payload for ADCs. The resulting anti-c-Kit conjugates (ADC-3 and ADC-4) demonstrated in vivo efficacy in the c-Kit positive gastrointestinal stromal tumor GIST-T1 xenograft model in a target-dependent manner.

6.
J Med Chem ; 61(6): 2552-2570, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29498522

ABSTRACT

Soluble guanylate cyclase (sGC), the endogenous receptor for nitric oxide (NO), has been implicated in several diseases associated with oxidative stress. In a pathological oxidative environment, the heme group of sGC can be oxidized becoming unresponsive to NO leading to a loss in the ability to catalyze the production of cGMP. Recently a dysfunctional sGC/NO/cGMP pathway has been implicated in contributing to elevated intraocular pressure associated with glaucoma. Herein we describe the discovery of molecules specifically designed for topical ocular administration, which can activate oxidized sGC restoring the ability to catalyze the production of cGMP. These efforts culminated in the identification of compound (+)-23, which robustly lowers intraocular pressure in a cynomolgus model of elevated intraocular pressure over 24 h after a single topical ocular drop and has been selected for clinical evaluation.


Subject(s)
Enzyme Activators/chemical synthesis , Enzyme Activators/therapeutic use , Glaucoma/drug therapy , Soluble Guanylyl Cyclase/drug effects , Administration, Ophthalmic , Administration, Topical , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic GMP/biosynthesis , Drug Discovery , Enzyme Activators/administration & dosage , Humans , Intraocular Pressure/drug effects , Macaca fascicularis , Ophthalmic Solutions , Oxidation-Reduction , Rabbits
7.
J Med Chem ; 61(4): 1622-1635, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29400470

ABSTRACT

A noninvasive topical ocular therapy for the treatment of neovascular or "wet" age-related macular degeneration would provide a patient administered alternative to the current standard of care, which requires physician administered intravitreal injections. This manuscript describes a novel strategy for the use of in vivo models of choroidal neovascularization (CNV) as the primary means of developing SAR related to efficacy from topical administration. Ultimately, this effort led to the discovery of acrizanib (LHA510), a small-molecule VEGFR-2 inhibitor with potency and efficacy in rodent CNV models, limited systemic exposure after topical ocular administration, multiple formulation options, and an acceptable rabbit ocular PK profile.


Subject(s)
Administration, Topical , Indoles/administration & dosage , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Animals , Choroidal Neovascularization , Drug Discovery , Indoles/pharmacokinetics , Indoles/therapeutic use , Ophthalmic Solutions , Protein Kinase Inhibitors , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Rabbits , Rodentia , Structure-Activity Relationship
8.
Protein Expr Purif ; 147: 38-48, 2018 07.
Article in English | MEDLINE | ID: mdl-29475084

ABSTRACT

Myocilin (MYOC) is a secreted protein found in human aqueous humor (AH) and mutations in the MYOC gene are the most common mutation observed in glaucoma patients. Human AH analyzed under non-reducing conditions suggests that MYOC is not normally found in a monomeric form, but rather is predominantly dimeric. Although MYOC was first reported almost 20 years ago, a technical challenge still faced by researchers is an inability to isolate full-length MYOC protein for experimental purposes. Herein we describe two methods by which to isolate sufficient quantities of human full-length MYOC protein from mammalian cells. One method involved identification of a cell line (HeLa S3) that would secrete full-length protein (15 mg/L) while the second method involved a purification approach from 293 cells requiring identification and modification of an internal MYOC cleavage site (Glu214/Leu215). MYOC protein yield from 293 cells was improved by mutation of two MYOC N-terminal cysteines (C47 and C61) to serines. Analytical size exclusion chromatography of our full-length MYOC protein purified from 293 cells indicated that it is predominantly dimeric and we propose a structure for the MYOC dimer. We hope that by providing methods to obtain MYOC protein, researchers will be able to utilize the protein to obtain new insights into MYOC biology. The ultimate goal of MYOC research is to better understand this target so we can help the patient that carries a MYOC mutation retain vision and maintain quality of life.


Subject(s)
Aqueous Humor/metabolism , Cytoskeletal Proteins/chemistry , Eye Proteins/chemistry , Glycoproteins/chemistry , Protein Multimerization , Animals , Binding Sites/genetics , Blotting, Western , COS Cells , Cell Line , Chlorocebus aethiops , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Mutation , Protein Conformation
9.
Bioorg Med Chem Lett ; 28(3): 365-370, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29275937

ABSTRACT

Nicotinamide phosphoribosyltransferase is a key metabolic enzyme that is a potential target for oncology. Utilizing publicly available crystal structures of NAMPT and in silico docking of our internal compound library, a NAMPT inhibitor, 1, obtained from a phenotypic screening effort was replaced with a more synthetically tractable scaffold. This compound then provided an excellent foundation for further optimization using crystallography driven structure based drug design. From this approach, two key motifs were identified, the (S,S) cyclopropyl carboxamide and the (S)-1-N-phenylethylamide that endowed compounds with excellent cell based potency. As exemplified by compound 27e such compounds could be useful tools to explore NAMPT biology in vivo.


Subject(s)
Amides/pharmacology , Cyclopropanes/pharmacology , Cytokines/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Adenosine/analogs & derivatives , Amides/chemical synthesis , Amides/chemistry , Crystallography, X-Ray , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Nicotinamide Phosphoribosyltransferase/metabolism , Phenotype , Structure-Activity Relationship
10.
ACS Med Chem Lett ; 7(4): 357-62, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27096041

ABSTRACT

Anti-VEGF therapy has been a clinically validated treatment of age-related macular degeneration (AMD). We have recently reported the discovery of indole based oral VEGFR-2 inhibitors that provide sustained ocular retention and efficacy in models of wet-AMD. We disclose herein the synthesis and the biological evaluation of a series of novel core replacements as an expansion of the reported indole based VEGFR-2 inhibitor series. Addition of heteroatoms to the existing core and/or rearranging the heteroatoms around the 6-5 bicyclic ring structure produced a series of compounds that generally retained good on-target potency and an improved solubility profile. The hERG affinity was proven not be dependent on the change in lipophilicity through alteration of the core structure. A serendipitous discovery led to the identification of a new indole-pyrimidine connectivity: from 5-hydroxy to 6-hydroxyindole with potentially vast implication on the in vitro/in vivo properties of this class of compounds.

11.
J Med Chem ; 58(23): 9273-86, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26568411

ABSTRACT

The benefit of intravitreal anti-VEGF therapy in treating wet age-related macular degeneration (AMD) is well established. Identification of VEGFR-2 inhibitors with optimal ADME properties for an ocular indication provides opportunities for dosing routes beyond intravitreal injection. We employed a high-throughput in vivo screening strategy with rodent models of choroidal neovascularization and iterative compound design to identify VEGFR-2 inhibitors with potential to benefit wet AMD patients. These compounds demonstrate preferential ocular tissue distribution and efficacy after oral administration while minimizing systemic exposure.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Administration, Oral , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacokinetics , Animals , Choroid/drug effects , Choroid/pathology , Choroidal Neovascularization/pathology , Female , Humans , Intravitreal Injections , Male , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Rats , Wet Macular Degeneration/pathology
12.
PLoS One ; 9(10): e111472, 2014.
Article in English | MEDLINE | ID: mdl-25343517

ABSTRACT

Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.


Subject(s)
Neovascularization, Pathologic/metabolism , Pyrroles/metabolism , Toll-Like Receptor 2/metabolism , Animals , Choroidal Neovascularization/pathology , Disease Models, Animal , HEK293 Cells , Humans , Lasers , Leukocytes/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/pathology , Toll-Like Receptor 2/agonists
13.
Invest Ophthalmol Vis Sci ; 55(10): 6525-34, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25205860

ABSTRACT

PURPOSE: We attempted to reproduce published studies that evaluated whether the following factors influence choroidal neovascularization (CNV) induced by laser photocoagulation in murine retinas: small interfering RNA (siRNA), cobra venom factor, complement factors C3 and C5, and complement receptor C5aR. In addition, we explored whether laser-induced CNV in mice was influenced by the vendor of origin of the animals. METHODS: Reagents or genotypes reported by others to influence CNV in this model were assessed using our standard procedures. Retrospective analyses of control or placebo mice in many experiments were done to evaluate whether the CNV area induced by laser photocoagulation varied according to vendor. RESULTS: Administration of the following agents did not have a substantial impact on the CNV induced by laser burns in mice: siRNA, low-molecular-weight inhibitor of the C5a receptor (PMX53), or cobra venom factor. Jackson Laboratory (JAX) mice lacking either C3 or C5 had increased neovascularization compared to non-littermate JAX wild-type controls. Taconic mice lacking C3 had reduced CNV compared to non-littermate Taconic wild-type control mice. A retrospective analysis of vehicle-treated wild-type C57BL/6 mice used as controls across 132 experiments conducted from 2007 to 2010 revealed that mice purchased from JAX or from Charles River produced less neovascularization than mice from Taconic. CONCLUSIONS: We present our recommended methods for conducting experiments with the mouse laser-induced CNV model to enhance reproducibility and minimize investigator bias.


Subject(s)
Choroidal Neovascularization/pathology , Laser Coagulation/adverse effects , Retinal Pigment Epithelium/pathology , Animals , Choroidal Neovascularization/etiology , Choroidal Neovascularization/genetics , Disease Models, Animal , Female , Fluorescein Angiography , Fundus Oculi , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Reproducibility of Results , Retinal Pigment Epithelium/metabolism , Retrospective Studies , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
14.
ACS Med Chem Lett ; 4(12): 1203-7, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24900631

ABSTRACT

Aldosterone is a key signaling component of the renin-angiotensin-aldosterone system and as such has been shown to contribute to cardiovascular pathology such as hypertension and heart failure. Aldosterone synthase (CYP11B2) is responsible for the final three steps of aldosterone synthesis and thus is a viable therapeutic target. A series of imidazole derived inhibitors, including clinical candidate 7n, have been identified through design and structure-activity relationship studies both in vitro and in vivo. Compound 7n was also found to be a potent inhibitor of 11ß-hydroxylase (CYP11B1), which is responsible for cortisol production. Inhibition of CYP11B1 is being evaluated in the clinic for potential treatment of hypercortisol diseases such as Cushing's syndrome.

15.
Bioorg Med Chem Lett ; 21(5): 1447-51, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21300545

ABSTRACT

The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD/HDAC5 signaling.


Subject(s)
Azoles/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Azoles/chemical synthesis , Azoles/chemistry , Azoles/pharmacokinetics , Biological Availability , Histone Deacetylases/metabolism , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase C/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Signal Transduction , Structure-Activity Relationship
16.
J Med Chem ; 53(15): 5400-21, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684591

ABSTRACT

A novel 2,6-naphthyridine was identified by high throughput screen (HTS) as a dual protein kinase C/D (PKC/PKD) inhibitor. PKD inhibition in the heart was proposed as a potential antihypertrophic mechanism with application as a heart failure therapy. As PKC was previously identified as the immediate upstream activator of PKD, PKD vs PKC selectivity was essential to understand the effect of PKD inhibition in models of cardiac hypertrophy and heart failure. The present study describes the modification of the HTS hit to a series of prototype pan-PKD inhibitors with routine 1000-fold PKD vs PKC selectivity. Example compounds inhibited PKD activity in vitro, in cells, and in vivo following oral administration. Their effects on heart morphology and function are discussed herein.


Subject(s)
Aminopyridines/chemical synthesis , Naphthyridines/chemical synthesis , Protein Kinase C/antagonists & inhibitors , Active Transport, Cell Nucleus , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cell Nucleus/metabolism , Histone Deacetylases/metabolism , Isoenzymes/antagonists & inhibitors , Male , Models, Molecular , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle Cells/pathology , Myocardium/metabolism , Myocardium/pathology , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Phosphorylation , Protein Binding , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
J Med Chem ; 53(15): 5422-38, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684592

ABSTRACT

The synthesis and biological evaluation of potent and selective PKD inhibitors are described herein. The compounds described in the present study selectively inhibit PKD among other putative HDAC kinases. The PKD inhibitors of the present study blunt phosphorylation and subsequent nuclear export of HDAC4/5 in response to diverse agonists. These compounds further establish the central role of PKD as an HDAC4/5 kinase and enhance the current understanding of cardiac myocyte signal transduction. The in vivo efficacy of a representative example compound on heart morphology is reported herein.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Aminopyridines/chemical synthesis , Naphthyridines/chemical synthesis , Piperazines/chemical synthesis , Protein Kinase C/antagonists & inhibitors , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/pharmacokinetics , 2,2'-Dipyridyl/pharmacology , Active Transport, Cell Nucleus , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Cardiomegaly/drug therapy , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cell Nucleus/metabolism , Histone Deacetylases/metabolism , Isoenzymes/antagonists & inhibitors , Male , Models, Molecular , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle Cells/pathology , Myocardium/metabolism , Myocardium/pathology , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Phosphorylation , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 20(15): 4324-7, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20615692

ABSTRACT

Aldosterone, the final component of the renin-angiotensin-aldosterone system, plays an important role in the pathophysiology of hypertension and congestive heart failure. Aldosterone synthase (CYP11B2) catalyzes the last three steps of aldosterone biosynthesis, and as such appears to be a target for the treatment of these disorders. A sulfonamide-imidazole scaffold has proven to be a potent inhibitor of CYP11B2. Furthermore, this scaffold can achieve high levels of selectivity for CYP11B2 over CYP11B1, a key enzyme in the biosynthesis of cortisol.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Cytochrome P-450 CYP11B2/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Steroid 11-beta-Hydroxylase/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
19.
FEBS Lett ; 584(3): 631-7, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20018189

ABSTRACT

Class IIa histone deacetylases (HDACs) repress genes involved in pathological cardiac hypertrophy. The anti-hypertrophic action of class IIa HDACs is overcome by signals that promote their phosphorylation-dependent nuclear export. Several kinases have been shown to phosphorylate class IIa HDACs, including calcium/calmodulin-dependent protein kinase (CaMK), protein kinase D (PKD) and G protein-coupled receptor kinase (GRK). However, the identity of the kinase(s) responsible for phosphorylating class IIa HDACs during cardiac hypertrophy has remained controversial. We describe a novel and selective small molecule inhibitor of PKD, bipyridyl PKD inhibitor (BPKDi). BPKDi blocks signal-dependent phosphorylation and nuclear export of class IIa HDACs in cardiomyocytes and concomitantly suppresses hypertrophy of these cells. These studies define PKD as a principal cardiac class IIa HDAC kinase.


Subject(s)
Histone Deacetylases/metabolism , Myocardium/enzymology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Immunoblotting , Immunoprecipitation , Phosphorylation , Protein Transport , Rats , Rats, Sprague-Dawley
20.
Org Lett ; 5(21): 3859-62, 2003 Oct 16.
Article in English | MEDLINE | ID: mdl-14535728

ABSTRACT

[structure: see text] The quinone portion of the ansamycin geldanamycin was made with complete selectivity from the 1,4-dihydroquinone generated from a 1,4-bis-methoxymethyl (MOM) ether intermediate. Palladium catalysis with air gave the desired product in 98% isolated yield. The structure was established using NMR, UV, and X-ray analysis with comparisons to geldanamycin, ortho-quino-geldanamycin and a model compound.


Subject(s)
Quinones/chemical synthesis , Benzoquinones , Lactams, Macrocyclic , Models, Chemical , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL