Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
Add more filters











Publication year range
1.
Anal Chem ; 96(33): 13371-13378, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39116285

ABSTRACT

Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.


Subject(s)
Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Hemin , Histidine , Metal-Organic Frameworks , Hemin/chemistry , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Histidine/chemistry , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Colorimetry , Humans , Catalysis , Biomimetic Materials/chemistry
2.
Anal Chem ; 96(36): 14590-14597, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39183481

ABSTRACT

Hemin/G-quadruplex (hG4) complexes are frequently used as artificial peroxidase-like enzymatic systems (termed G4 DNAzymes) in many biosensing applications, in spite of a rather low efficiency, notably in terms of detection limits. To tackle this issue, we report herein a strategy in which hemin is chemically modified with the amino acids found in the active site of parent horseradish peroxidase (HRP), with the aim of recreating an environment conducive to high catalytic activity. When hemin is conjugated with a single arginine, it associates with G4 to create an arginine-hemin/G4 (R-hG4) DNAzyme that exhibits improved catalytic performances, characterized by kinetic analysis and DFT calculations. The practical relevance of this system was demonstrated with the implementation of biosensing assays enabling the chemiluminescent detection of G4-containing DNA and colorimetry detection of the flap endonuclease 1 (FEN1) enzyme with a high efficiency and sensitivity. Our results thus provide a guide for future enzyme engineering campaigns to create ever more efficient peroxidase-mimicking DNA-based systems.


Subject(s)
Arginine , DNA, Catalytic , G-Quadruplexes , Hemin , Hemin/chemistry , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Arginine/chemistry , Arginine/metabolism , Biosensing Techniques/methods , Peroxidase/chemistry , Peroxidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Limit of Detection , Colorimetry , Density Functional Theory
3.
BMC Biol ; 22(1): 177, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183303

ABSTRACT

BACKGROUND: Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data. RESULTS: We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers. CONCLUSIONS: Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.


Subject(s)
G-Quadruplexes , Genome, Human , Humans , Regulatory Sequences, Nucleic Acid/genetics , Promoter Regions, Genetic , Regulatory Elements, Transcriptional/genetics
4.
Eur J Med Chem ; 276: 116641, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38971047

ABSTRACT

Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 µM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.


Subject(s)
Chagas Disease , G-Quadruplexes , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , G-Quadruplexes/drug effects , Ligands , Chagas Disease/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Humans , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Parasitic Sensitivity Tests , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/chemical synthesis
5.
Adv Sci (Weinh) ; 11(32): e2402237, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924304

ABSTRACT

Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).


Subject(s)
Hemin , Hemin/chemistry , Hemin/metabolism , G-Quadruplexes , Cost-Benefit Analysis/methods , Molecular Docking Simulation/methods , Catalysis , Nanostructures/chemistry , Wastewater/chemistry
6.
Biochimie ; 225: 146-155, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38821199

ABSTRACT

The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.


Subject(s)
G-Quadruplexes , Metals, Heavy , G-Quadruplexes/drug effects , Metals, Heavy/chemistry , DNA/chemistry , Circular Dichroism , Telomere/chemistry , Fluorescence Resonance Energy Transfer , Humans , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/chemistry , Proto-Oncogene Proteins c-kit/metabolism
7.
NAR Genom Bioinform ; 6(2): lqae060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817800

ABSTRACT

Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.

8.
Int J Biol Macromol ; 270(Pt 1): 132244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729459

ABSTRACT

To combat cancer, a comprehensive understanding of the molecular mechanisms and behaviors involved in carcinogenesis is crucial, as tumorigenesis is a complex process influenced by various genetic events and disease hallmarks. The B-MYB gene encodes a transcription factor involved in cell cycle regulation, survival, and differentiation in normal cells. B-MYB can be transformed into an oncogene through mutations, and abnormal expression of B-MYB has been identified in various cancers, including lung cancer, and is associated with poor prognosis. Targeting this oncogene is a promising approach for anti-cancer drug design. B-MYB has been deemed undruggable in previous reports, necessitating the search for novel therapeutic options. In this study, we found that the B-MYB gene promoter contains several G/C rich motifs compatible with G-quadruplex (G4) formation. We investigated and validated the existence of G4 structures in the promoter region of B-MYB, first in vitro using a combination of bioinformatics, biophysical, and biochemical methods, then in cell with the recently developed G4access method.


Subject(s)
G-Quadruplexes , Promoter Regions, Genetic , Proto-Oncogene Mas , Promoter Regions, Genetic/genetics , Humans , Trans-Activators/genetics , Trans-Activators/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Nucleotide Motifs/genetics
9.
Nat Commun ; 15(1): 1992, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443388

ABSTRACT

I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.


Subject(s)
Azides , Benzazepines , Magnetic Resonance Imaging , Humans , HeLa Cells , DNA , Antibodies
10.
Genome Res ; 34(2): 217-230, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38355305

ABSTRACT

Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.


Subject(s)
G-Quadruplexes , RNA, Long Noncoding , RNA , RNA, Long Noncoding/genetics , Proteins/genetics
11.
Life Sci ; 340: 122481, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301873

ABSTRACT

Guanine-rich sequences can form G-quadruplexes (G4) in living cells, making these structures promising anti-cancer targets. Compounds able to recognize these structures have been investigated as potential anticancer drugs; however, no G4 binder has yet been approved in the clinic. Here, we describe G4 ligands structure-activity relationships, in vivo effects as well as clinical trials. Addressing G4 ligand characteristics, targeting challenges, and structure-activity relationships, this review provides insights into the development of potent and selective G4-targeting molecules for therapeutic applications.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Neoplasms , Humans , Ligands , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy
12.
ACS Omega ; 9(3): 4096-4101, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284014

ABSTRACT

Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.

13.
Bioelectrochemistry ; 156: 108611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37995502

ABSTRACT

G-quadruplexes (G4) are stable alternative secondary structures of nucleic acids. With increasing understanding of their roles in biological processes and their application in bio- and nanotechnology, the exploration of novel methods for the analysis of these structures is becoming important. In this work, N-methyl mesoporphyrin IX (NMM) was used as a voltammetric probe for an easy electrochemical detection of G4s. Cyclic voltammetry on a hanging mercury drop electrode (HMDE) was used to detect NMM with a limit of detection (LOD) of 40 nM. Characteristic reduction signal of NMM was found to be substantially higher in the presence of G4 oligodeoxynucleotides (ODNs) than in the presence of single- or double-stranded ODNs and even ODNs susceptible to form G4s but in their unfolded, single-stranded forms. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected by an electrochemical method for the first time. All obtained results were supported by circular dichroism spectroscopy. This work expands on the concept of electrochemical probes utilization in DNA secondary structure recognition and offers a proof of principle that can be potentially employed in the development of novel electroanalytical methods for nucleic acid structure studies.


Subject(s)
G-Quadruplexes , Mercury , DNA/chemistry , Mesoporphyrins/chemistry , Mercury/analysis
14.
Nucleic Acids Res ; 52(1): 448-461, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37986223

ABSTRACT

Metal ions are essential components for the survival of living organisms. For most species, intracellular and extracellular ionic conditions differ significantly. As G-quadruplexes (G4s) are ion-dependent structures, changes in the [Na+]/[K+] ratio may affect the folding of genomic G4s. More than 11000 putative G4 sequences in the human genome (hg19) contain at least two runs of three continuous cytosines, and these mixed G/C-rich sequences may form a quadruplex or a competing hairpin structure based on G-C base pairing. In this study, we examine how the [Na+]/[K+] ratio influences the structures of G/C-rich sequences. The natural G4 structure with a 9-nt long central loop, CEBwt, was chosen as a model sequence, and the loop bases were gradually replaced by cytosines. The series of CEB mutations revealed that the presence of cytosines in G4 loops does not prevent G4 folding or decrease G4 stability but increases the probability of forming a competing structure, either a hairpin or an intermolecular duplex. Slow conversion to the quadruplex in vitro (in a potassium-rich buffer) and cells was demonstrated by NMR. 'Shape-shifting' sequences may respond to [Na+]/[K+] changes with delayed kinetics.


Subject(s)
G-Quadruplexes , Potassium , Sodium , Humans , Magnetic Resonance Spectroscopy , Mutation , Potassium/chemistry , Sodium/chemistry
15.
J Mol Biol ; 436(2): 168359, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37952768

ABSTRACT

Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.


Subject(s)
G-Quadruplexes , HIV-1 , Sp1 Transcription Factor , Binding Sites , DNA/chemistry , Guanine/chemistry , HIV-1/genetics , HIV-1/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Humans , Gene Expression Regulation, Viral
16.
Angew Chem Int Ed Engl ; 63(7): e202313226, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38143239

ABSTRACT

DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes. Most notably, the formation of a stable so-called KNa-quadruplex (KNaQ) requires concurrent coordination of K+ and Na+ ions at two distinct binding sites. This structure provides novel insight into G-rich DNA folding under ionic conditions relevant to eukaryotic cell physiology and the structural evolution of telomeric DNA. It highlights the differences between the structural organization of human and nematode telomeric DNA, which should be considered when using C. elegans as a model in telomere biology, particularly in drug screening applications. Additionally, the absence/presence of KNaQ motifs in the host/parasite introduces an intriguing possibility of exploiting the KNaQ fold as a plausible antiparasitic drug target. The structure's unique shape and ion dependency and the possibility of controlling its folding by using low-molecular-weight ligands can be used for the design or discovery of novel recognition DNA elements and sensors.


Subject(s)
G-Quadruplexes , Animals , Humans , Caenorhabditis elegans/genetics , DNA/chemistry , Base Sequence , Cations , Telomere/genetics
17.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100552

ABSTRACT

G-rich sequences have the potential to fold into G-quadruplexes (GQs). G-quadruplexes, particularly those positioned in the regulatory regions of proto-oncogenes, have recently garnered attention in anti-cancer drug design. A thermal FRET assay was employed to conduct preliminary screening of various alkaloids, aiming to identify stronger interactions with a specific set of G-rich double-labeled oligonucleotides in both K + and Na + buffers. These oligonucleotides were derived from regions associated with Kit, Myc, Ceb, Bcl2, human telomeres, and potential G-quadruplex forming sequences found in the Nrf2 and Trf2 promoters. Palmatine generally increased the stability of different G-rich sequences into their folded GQ structures, more or less in a concentration dependent manner. The thermal stability and interaction of palmatine was further studied using transition FRET (t-FRET), CD and UV-visible spectroscopy and molecular dynamics simulation methods. Palmatine showed the strongest interaction with T RF2 in both K+ and Na+ buffers even at equimolar concentration ratio. T-FRET studies revealed that palmatine has the potential to disrupt double-strand formation by the T RF2 sequence in the presence of its complementary strand. Palmatine exhibits a stronger interaction with G-rich strand DNA, promoting its folding into G-quadruplex structures. It is noteworthy that palmatine exhibits the strongest interaction with T RF2, which is the shortest sequence among the G-rich oligonucleotides studied, featuring only one nucleotide for two of its loops. Palmatine represents a suitable structure for drug design to develop more specific ligands targeting G-quadruplexes. Whether palmatine can also affect the expression of the T RF2 gene requires further studies.Communicated by Ramaswamy H. Sarma.

18.
Biochimie ; 214(Pt A): 45-56, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660977

ABSTRACT

The majority of drugs are metabolized by cytochrome P450 (CYP) enzymes, primarily belonging to the CYP1, CYP2 and CYP3 families. Genetic variations are the main cause of inter-individual differences in drug response, which constitutes a major concern in pharmacotherapy. G-quadruplexes (G4s), are non-canonical DNA and RNA secondary structures formed by guanine-rich sequences. G4s have been implicated in cancer and gene regulation. In this study, we investigated putative G4-forming sequences (PQSs) in the CYP genes. Our findings reveal a high density of PQSs in the full genes of CYP family 2. Moreover, we observe an increased density of PQSs in the promoters of CYP family 1 genes compared to non-CYP450 genes. Importantly, stable PQSs were also identified in all studied CYP genes. Subsequently, we assessed the impact of the most frequently reported genetic mutations in the selected genes and the possible effect of these mutations on G4 formation as well as on the thermodynamic stability of predicted G4s. We found that 4 SNPs overlap G4 sequences and lead to mutated DNA and RNA G4 forming sequences in their context. Notably, the mutation in the CYP2C9 gene, which is associated with impaired (S)-warfarin metabolism in patients, alters a G4 sequence. We then demonstrated that at least 10 of the 13 chosen cytochrome P450 G4 candidates form G-quadruplex structures in vitro, using a combination of spectroscopic methods. In conclusion, our findings indicate the potential role of G-quadruplexes in the regulation of cytochrome genes, and emphasize the importance of G-quadruplexes in drug metabolism.


Subject(s)
G-Quadruplexes , Humans , Promoter Regions, Genetic , DNA , RNA , Cytochrome P-450 Enzyme System/genetics
20.
Nucleic Acids Res ; 51(14): 7198-7204, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37395407

ABSTRACT

Hepatitis B virus (HBV) is one of the most dangerous human pathogenic viruses found in all corners of the world. Recent sequencing of ancient HBV viruses revealed that these viruses have accompanied humanity for several millenia. As G-quadruplexes are considered to be potential therapeutic targets in virology, we examined G-quadruplex-forming sequences (PQS) in modern and ancient HBV genomes. Our analyses showed the presence of PQS in all 232 tested HBV genomes, with a total number of 1258 motifs and an average frequency of 1.69 PQS per kbp. Notably, the PQS with the highest G4Hunter score in the reference genome is the most highly conserved. Interestingly, the density of PQS motifs is lower in ancient HBV genomes than in their modern counterparts (1.5 and 1.9/kb, respectively). This modern frequency of 1.90 is very close to the PQS frequency of the human genome (1.93) using identical parameters. This indicates that the PQS content in HBV increased over time to become closer to the PQS frequency in the human genome. No statistically significant differences were found between PQS densities in HBV lineages found in different continents. These results, which constitute the first paleogenomics analysis of G4 propensity, are in agreement with our hypothesis that, for viruses causing chronic infections, their PQS frequencies tend to converge evolutionarily with those of their hosts, as a kind of 'genetic camouflage' to both hijack host cell transcriptional regulatory systems and to avoid recognition as foreign material.


Subject(s)
G-Quadruplexes , Hepatitis B virus , Humans , Genome, Human , Genomics , Hepatitis B virus/genetics , Paleontology , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL