Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 23(2): 202-211, 2021.
Article in English | MEDLINE | ID: mdl-32795191

ABSTRACT

In this study, we sought to compose consortia of plant growth-promoting (PGP) and trace element tolerant bacteria, to improve plant growth and inhibit uptake and translocation of trace elements, eventually allowing the cultivation of profitmaking crops on trace elements polluted soils, reducing the risks of entrance of these elements into the food chain. Sunflower (Helianthus annuus L.) was grown on two polluted military soils (MS1 and MS2) in greenhouse microcosms and inoculated with three different bacterial consortia (C1, C2, C3). Growth and physiological status of the plants were unaffected during the experiment with the inoculation. After 2 months, plants were harvested. Consortium C2 and C3 decreased Pb shoot bioaccumulation by respectively 80-85% when plants were grown in the MS1 and even to concentrations below detection limit in plants grown in MS2. Differences in uptake and (sub)cellular localization of Pb and Cd in selected bacterial isolates were investigated in vitro by TEM-EDX. Pb absorption was observed by Bacillus wiedmanni ST29 and Bacillus paramycoides ST9 cultures. While adsorption at the bacterial cell wall was observed by Bacillus paramycoides ST9 and retention in the extracellular matrix by Cellulosimicrobium cellulans ST54.


Subject(s)
Helianthus , Soil Pollutants , Trace Elements , Actinobacteria , Bacillus , Biodegradation, Environmental , Humans , Lead , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
2.
Int J Phytoremediation ; 22(5): 459-467, 2020.
Article in English | MEDLINE | ID: mdl-31602996

ABSTRACT

The area of soils polluted with heavy metals is increasing due to industrialization and globalization. Aromatic plant species can be a suitable alternative way for agricultural valorization and phytomanagement of such soils by the commercialization of essential oils avoiding risks for the food chain. The potential of growing Helianthus petiolaris in heavy metal polluted soils was assessed in pot experiments using spiked soils and soils from a shooting range. In terms of phytostabilization, H. petiolaris could grow in soils containing 1000 mg/kg Pb2+, 50 mg/kg Cd2+, accumulating more than three times the soil Cd content in the aerial parts and translocating significant amounts of Pb to the aerial parts when growing in soils polluted with up to 500 mg/kg Pb. When phytostabilization is considered, phytotoxicity of heavy metals strongly depends on the rhizospheric microbial communities, either by mitigating trace element phytotoxicity or promoting plant growth via phytohormone production. So, the effects of heavy metals on the diversity of the rhizospheric bacterial community were assessed using DNA-fingerprinting.


Subject(s)
Helianthus , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium , Lead , Soil
3.
J Ethnopharmacol ; 194: 749-754, 2016 Dec 24.
Article in English | MEDLINE | ID: mdl-27765606

ABSTRACT

BACKGROUND: Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. AIM: The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. METHODOLOGY: Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. RESULTS: The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. CONCLUSION: The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries.


Subject(s)
Biofilms/drug effects , Cymbopogon/chemistry , Lippia/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Plant Preparations/pharmacology , Acyclic Monoterpenes , Animals , CHO Cells , Cell Line , Cricetulus , Dental Caries/drug therapy , Dental Caries/microbiology , Microbial Sensitivity Tests/methods , Monoterpenes/chemistry , Monoterpenes/pharmacology , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Preparations/chemistry , Streptococcus mutans/drug effects , Terpenes/chemistry , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL