Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Proc Natl Acad Sci U S A ; 120(5): e2208960120, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36689660

ABSTRACT

The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.


Subject(s)
Neurofibromatosis 1 , Neurofibromin 1 , Humans , Neurofibromin 1/metabolism , Neurofibromatosis 1/genetics , Dimerization , Mutation , Mutation, Missense
3.
Elife ; 102021 11 30.
Article in English | MEDLINE | ID: mdl-34846302

ABSTRACT

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.


Subject(s)
Cells, Cultured/physiology , ErbB Receptors/chemistry , Ligands , Signal Transduction/drug effects , Spodoptera/physiology , Transforming Growth Factors/chemistry , Animals , Humans , Models, Molecular
4.
Elife ; 102021 01 04.
Article in English | MEDLINE | ID: mdl-33393463

ABSTRACT

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.


Malaria is an infectious disease caused by the family of Plasmodium parasites, which pass between mosquitoes and animals to complete their life cycle. With one bite, mosquitoes can deposit up to one hundred malaria parasites into the human skin, from where they enter the bloodstream. After increasing their numbers in liver cells, the parasites hijack, invade and remodel red blood cells to create a safe space to grow and mature. This includes inserting holes in the membrane of red blood cells to take up nutrients from the bloodstream. A complex of three tightly bound RhopH proteins plays an important role in these processes. These proteins are unique to malaria parasites, and so far, it has been unclear how they collaborate to perform these specialist roles. Here, Schureck et al. have purified the RhopH complex from Plasmodium-infected human blood to determine its structure and reveal how it moves within an infected red blood cell. Using cryo-electron microscopy to visualise the assembly in fine detail, Schureck et al. showed that the three proteins bind tightly to each other over large areas using multiple anchor points. As the three proteins are produced, they assemble into a complex that remains dissolved and free of parasite membranes until the proteins have been delivered to their target red blood cells. Some hours after delivery, specific sections of the RhopH complex are inserted into the red blood cell membrane to produce pores that allow them to take up nutrients and to grow. The study of Schureck et al. provides important new insights into how the RhopH complex serves multiple roles during Plasmodium infection of human red blood cells. The findings provide a framework for the development of effective antimalarial treatments that target RhopH proteins to block red blood cell invasion and nutrient uptake.


Subject(s)
Erythrocytes/parasitology , Genes, Protozoan/physiology , Plasmodium falciparum/physiology , Multigene Family/physiology , Nutrients/metabolism , Plasmodium falciparum/genetics
5.
IUCrJ ; 7(Pt 4): 639-643, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32695410

ABSTRACT

We report the determination of the structure of Escherichia coli ß-galactosidase at a resolution of ∼1.8 Šusing data collected on a 200 kV CRYO ARM microscope equipped with a K3 direct electron detector. The data were collected in a single 24 h session by recording images from an array of 7 × 7 holes at each stage position using the automated data collection program SerialEM. In addition to the expected features such as holes in the densities of aromatic residues, the map also shows density bumps corresponding to the locations of hydrogen atoms. The hydrogen densities are useful in assigning absolute orientations for residues such as glutamine or asparagine by removing the uncertainty in the fitting of the amide groups, and are likely to be especially relevant in the context of structure-guided drug design. These findings validate the use of electron microscopes operating at 200 kV for imaging protein complexes at atomic resolution using cryo-EM.

6.
Science ; 366(6461): 109-115, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31604311

ABSTRACT

Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo-electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical "active" conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.


Subject(s)
14-3-3 Proteins/chemistry , Proto-Oncogene Proteins B-raf/chemistry , 14-3-3 Proteins/metabolism , Animals , Catalytic Domain , Cell Line , Cryoelectron Microscopy , Humans , Insect Proteins/chemistry , Insect Proteins/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , Mutation , Phosphorylation , Protein Domains , Protein Multimerization , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Spodoptera
7.
Nat Struct Mol Biol ; 26(8): 679-685, 2019 08.
Article in English | MEDLINE | ID: mdl-31285607

ABSTRACT

The RNA-guided Cas9 endonuclease from Streptococcus pyogenes is a single-turnover enzyme that displays a stable product state after double-stranded-DNA cleavage. Here, we present cryo-EM structures of precatalytic, postcatalytic and product states of the active Cas9-sgRNA-DNA complex in the presence of Mg2+. In the precatalytic state, Cas9 adopts the 'checkpoint' conformation with the HNH nuclease domain positioned far away from the DNA. Transition to the postcatalytic state involves a dramatic ~34-Å swing of the HNH domain and disorder of the REC2 recognition domain. The postcatalytic state captures the cleaved substrate bound to the catalytically competent HNH active site. In the product state, the HNH domain is disordered, REC2 returns to the precatalytic conformation, and additional interactions of REC3 and RuvC with nucleic acids are formed. The coupled domain motions and interactions between the enzyme and the RNA-DNA hybrid provide new insights into the mechanism of genome editing by Cas9.


Subject(s)
CRISPR-Associated Protein 9/ultrastructure , CRISPR-Cas Systems , DNA/metabolism , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/metabolism , Cryoelectron Microscopy , DNA/ultrastructure , Macromolecular Substances/ultrastructure , Models, Molecular , Motion , Protein Conformation , Protein Domains , RNA Editing , RNA, Guide, Kinetoplastida/metabolism , Streptococcus pyogenes/enzymology
8.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985564

ABSTRACT

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Subject(s)
Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Cryoelectron Microscopy , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/immunology , Bacteriophages/genetics , Bacteriophages/immunology , CRISPR-Associated Proteins/immunology , CRISPR-Associated Proteins/ultrastructure , DNA, Viral/chemistry , Models, Chemical , Models, Molecular , Multiprotein Complexes/chemistry , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/ultrastructure
9.
Nature ; 537(7621): 567-571, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27580033

ABSTRACT

Glutamate receptors are ligand-gated tetrameric ion channels that mediate synaptic transmission in the central nervous system. They are instrumental in vertebrate cognition and their dysfunction underlies diverse diseases. In both the resting and desensitized states of AMPA and kainate receptor subtypes, the ion channels are closed, whereas the ligand-binding domains, which are physically coupled to the channels, adopt markedly different conformations. Without an atomic model for the desensitized state, it is not possible to address a central problem in receptor gating: how the resting and desensitized receptor states both display closed ion channels, although they have major differences in the quaternary structure of the ligand-binding domain. Here, by determining the structure of the kainate receptor GluK2 subtype in its desensitized state by cryo-electron microscopy (cryo-EM) at 3.8 Å resolution, we show that desensitization is characterized by the establishment of a ring-like structure in the ligand-binding domain layer of the receptor. Formation of this 'desensitization ring' is mediated by staggered helix contacts between adjacent subunits, which leads to a pseudo-four-fold symmetric arrangement of the ligand-binding domains, illustrating subtle changes in symmetry that are important for the gating mechanism. Disruption of the desensitization ring is probably the key switch that enables restoration of the receptor to its resting state, thereby completing the gating cycle.


Subject(s)
Cryoelectron Microscopy , Receptors, Kainic Acid/metabolism , Receptors, Kainic Acid/ultrastructure , Animals , Binding Sites , Down-Regulation , Ion Channel Gating , Ligands , Models, Molecular , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Rats , Receptors, Kainic Acid/chemistry , GluK2 Kainate Receptor
10.
Mol Pharmacol ; 90(1): 35-41, 2016 07.
Article in English | MEDLINE | ID: mdl-27190212

ABSTRACT

The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP.


Subject(s)
Biocatalysis , Cryoelectron Microscopy , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/ultrastructure , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , Humans , Hydrolysis , Models, Biological , Protein Conformation
11.
Cell ; 165(7): 1698-1707, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27238019

ABSTRACT

Recent advances in single-particle cryoelecton microscopy (cryo-EM) are enabling generation of numerous near-atomic resolution structures for well-ordered protein complexes with sizes ≥ ∼200 kDa. Whether cryo-EM methods are equally useful for high-resolution structural analysis of smaller, dynamic protein complexes such as those involved in cellular metabolism remains an important question. Here, we present 3.8 Å resolution cryo-EM structures of the cancer target isocitrate dehydrogenase (93 kDa) and identify the nature of conformational changes induced by binding of the allosteric small-molecule inhibitor ML309. We also report 2.8-Å- and 1.8-Å-resolution structures of lactate dehydrogenase (145 kDa) and glutamate dehydrogenase (334 kDa), respectively. With these results, two perceived barriers in single-particle cryo-EM are overcome: (1) crossing 2 Å resolution and (2) obtaining structures of proteins with sizes < 100 kDa, demonstrating that cryo-EM can be used to investigate a broad spectrum of drug-target interactions and dynamic conformational states.


Subject(s)
Drug Discovery , Glutamate Dehydrogenase/ultrastructure , Isocitrate Dehydrogenase/ultrastructure , L-Lactate Dehydrogenase/ultrastructure , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Animals , Cattle , Chickens , Cryoelectron Microscopy , Crystallography, X-Ray , Glutamate Dehydrogenase/antagonists & inhibitors , Glutamate Dehydrogenase/chemistry , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/chemistry , Models, Molecular , Protein Conformation , Sulfonamides/chemistry , Sulfonamides/pharmacology
12.
Mol Pharmacol ; 89(6): 645-51, 2016 06.
Article in English | MEDLINE | ID: mdl-27036132

ABSTRACT

Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an "open" or "closed" state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes.


Subject(s)
Cryoelectron Microscopy/methods , Glutamate Dehydrogenase/ultrastructure , Animals , Cattle , Crystallography, X-Ray , Glutamate Dehydrogenase/chemistry , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Ligands , Mammals , Models, Molecular , NAD/chemistry , NAD/metabolism , Protein Structure, Quaternary
13.
Cell ; 164(4): 747-56, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26871634

ABSTRACT

CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.


Subject(s)
Bacterial Proteins/ultrastructure , Cation Transport Proteins/ultrastructure , Magnesium/metabolism , Thermotoga maritima/chemistry , Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Cryoelectron Microscopy , Models, Molecular , Molecular Dynamics Simulation
14.
Science ; 351(6275): 871-5, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26822609

ABSTRACT

p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPγS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPγS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Allosteric Regulation , Binding Sites , Cryoelectron Microscopy , Enzyme Inhibitors , Humans , Models, Molecular , Protein Structure, Tertiary
15.
Science ; 348(6239): 1147-51, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25953817

ABSTRACT

Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli ß-galactosidase and the cell-permeant inhibitor phenylethyl ß-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Thiogalactosides/chemistry , beta-Galactosidase/chemistry , Catalytic Domain , Cryoelectron Microscopy , Crystallography, X-Ray , Water/chemistry
16.
Proc Natl Acad Sci U S A ; 111(32): 11709-14, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25071206

ABSTRACT

We report the solution structure of Escherichia coli ß-galactosidase (∼465 kDa), solved at ∼3.2-Å resolution by using single-particle cryo-electron microscopy (cryo-EM). Densities for most side chains, including those of residues in the active site, and a catalytic Mg(2+) ion can be discerned in the map obtained by cryo-EM. The atomic model derived from our cryo-EM analysis closely matches the 1.7-Å crystal structure with a global rmsd of ∼0.66 Å. There are significant local differences throughout the protein, with clear evidence for conformational changes resulting from contact zones in the crystal lattice. Inspection of the map reveals that although densities for residues with positively charged and neutral side chains are well resolved, systematically weaker densities are observed for residues with negatively charged side chains. We show that the weaker densities for negatively charged residues arise from their greater sensitivity to radiation damage from electron irradiation as determined by comparison of density maps obtained by using electron doses ranging from 10 to 30 e(-)/Å(2). In summary, we establish that it is feasible to use cryo-EM to determine near-atomic resolution structures of protein complexes (<500 kDa) with low symmetry, and that the residue-specific radiation damage that occurs with increasing electron dose can be monitored by using dose fractionation tools available with direct electron detector technology.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/ultrastructure , beta-Galactosidase/chemistry , beta-Galactosidase/ultrastructure , Biophysical Phenomena , Catalytic Domain , Cryoelectron Microscopy , Crystallography, X-Ray , Escherichia coli/enzymology , Models, Molecular , Protein Conformation , Protein Structure, Quaternary , Static Electricity
17.
Nat Struct Mol Biol ; 20(12): 1352-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24154805

ABSTRACT

The activation of trimeric HIV-1 envelope glycoprotein (Env) by its binding to the cell-surface receptor CD4 and co-receptors (CCR5 or CXCR4) represents the first of a series of events that lead to fusion between viral and target-cell membranes. Here, we present the cryo-EM structure, at subnanometer resolution (~6 Å at 0.143 FSC), of the 'closed', prefusion state of trimeric HIV-1 Env complexed to the broadly neutralizing antibody VRC03. We show that three gp41 helices at the core of the trimer serve as an anchor around which the rest of Env is reorganized upon activation to the 'open' quaternary conformation. The architecture of trimeric HIV-1 Env in the prefusion state and in the activated intermediate state resembles the corresponding states of influenza hemagglutinin trimers, thus providing direct evidence for the similarity in entry mechanisms used by HIV-1, influenza and related enveloped viruses.


Subject(s)
HIV Envelope Protein gp41/chemistry , HIV-1 , Antibodies, Neutralizing/chemistry , Cryoelectron Microscopy , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Structure-Activity Relationship , Virus Internalization
18.
Curr Opin Struct Biol ; 23(2): 268-76, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23602427

ABSTRACT

The trimeric envelope glycoprotein of HIV-1, composed of gp120 and gp41 subunits, remains a major target for vaccine development. The structures of the core regions of monomeric gp120 and gp41 have been determined previously by X-ray crystallography. New insights into the structure of trimeric HIV-1 envelope glycoproteins are now coming from cryo-electron tomographic studies of the gp120/gp41 trimer as displayed on intact viruses and from cryo-electron microscopic studies of purified, soluble versions of the ectodomain of the trimer. Here, we review recent developments in these fields as they relate to our understanding of the structure and function of HIV-1 envelope glycoproteins.


Subject(s)
Protein Conformation , env Gene Products, Human Immunodeficiency Virus/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Electron Microscope Tomography , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp41/chemistry , Humans , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...