Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JMIR Serious Games ; 12: e54193, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190432

ABSTRACT

BACKGROUND: Restoring hand and finger function after a traumatic hand injury necessitates a regimen of consistent and conscientious exercise. However, motivation frequently wanes due to unchallenging repetitive tasks or discomfort, causing exercises to be performed carelessly or avoided completely. Introducing gamification to these repetitive tasks can make them more appealing to patients, ultimately increasing their motivation to exercise consistently. OBJECTIVE: This study aims to iteratively develop a serious virtual reality game for hand and finger rehabilitation within an appealing and engaging digital environment, encouraging patient motivation for at least 2 weeks of continuous therapy. METHODS: The development process comprised 3 distinct stages, each of which was subject to evaluation. Initially, a prototype was created to encompass the game's core functionalities, which was assessed by 18 healthy participants and 7 patients with impaired hand function. Subsequently, version 1 of the game was developed and evaluated with 20 patients who were divided into an investigation group and a control group. On the basis of these findings, version 2 was developed and evaluated with 20 patients who were divided into an investigation group and a control group. Motivation was assessed using the Intrinsic Motivation Inventory (IMI), while the application's quality was rated using the Mobile Application Rating Scale and the System Usability Scale. User feedback was gathered using semistructured interviews. RESULTS: The prototype evaluation confirmed the acceptance and feasibility of the game design. Version 1 significantly increased motivation in 2 IMI subscales, effort (P<.001) and usefulness (P=.02). In version 2, a significant increase in daily performed exercises was achieved (P=.008) compared to version 1, with significantly higher motivation in the IMI subscale effort (P=.02). High Mobile Application Rating Scale scores were obtained for both versions 1 and 2, with version 2 scoring 86.9 on the System Usability Scale, indicating excellent acceptability. User feedback provided by the semistructured interviews was instrumental in the iterative development regarding improvements and the expansion of the playable content. CONCLUSIONS: This study presented a virtual reality serious game designed for hand and finger rehabilitation. The game was well received and provided an environment that effectively motivated the users. The iterative development process incorporated user feedback, confirming the game's ease of use and feasibility even for patients with severely limited hand function.

2.
Front Rehabil Sci ; 3: 806114, 2022.
Article in English | MEDLINE | ID: mdl-36189032

ABSTRACT

Currently, there is neither a standardized mode for the documentation of phantom sensations and phantom limb pain, nor for their visualization as perceived by patients. We have therefore created a tool that allows for both, as well as for the quantification of the patient's visible and invisible body image. A first version provides the principal functions: (1) Adapting a 3D avatar for self-identification of the patient; (2) modeling the shape of the phantom limb; (3) adjusting the position of the phantom limb; (4) drawing pain and cramps directly onto the avatar; and (5) quantifying their respective intensities. Our tool (C.A.L.A.) was evaluated with 33 occupational therapists, physiotherapists, and other medical staff. Participants were presented with two cases in which the appearance and the position of the phantom had to be modeled and pain and cramps had to be drawn. The usability of the software was evaluated using the System Usability Scale and its functional range was evaluated using a self-developed questionnaire and semi-structured interview. In addition, our tool was evaluated on 22 patients with limb amputations. For each patient, body image as well as phantom sensation and pain were modeled to evaluate the software's functional scope. The accuracy of the created body image was evaluated using a self-developed questionnaire and semi-structured interview. Additionally, pain sensation was assessed using the SF-McGill Pain Questionnaire. The System Usability Scale reached a level of 81%, indicating high usability. Observing the participants, though, identified several operational difficulties. While the provided functions were considered useful by most participants, the semi-structured interviews revealed the need for an improved pain documentation component. In conclusion, our tool allows for an accurate visualization of phantom limbs and phantom limb sensations. It can be used as both a descriptive and quantitative documentation tool for analyzing and monitoring phantom limbs. Thus, it can help to bridge the gap between the therapist's conception and the patient's perception. Based on the collected requirements, an improved version with extended functionality will be developed.

SELECTION OF CITATIONS
SEARCH DETAIL