Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; 158: 105678, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33340635

ABSTRACT

Malignancies such as lung, breast and pancreatic carcinomas are associated with increased expression of the epidermal growth factor receptor, EGFR, and its role in the pathogenesis and progression of tumors has made this receptor a prime target in the development of antitumor therapies. In therapies targeting EGFR, the development of resistance owing to mutations and single nucleotide polymorphisms, and the expression of the receptor ligands themselves are very serious issues. In this work, both the ligand neuregulin and a bispecific antibody fragment to EGFR are conjugated separately or together to the same drug-delivery system to find the most promising candidate. Camptothecin is used as a model chemotherapeutic drug and superparamagnetic iron oxide nanoparticles as a delivery system. Results show that the lowest LD50 is achieved by formulations conjugated to both the antibody and the ligand, demonstrating a synergy. Additionally, the ligand location in the nucleus favors the antitumor activity of Camptothecin. The high loading capacity and efficiency convert these systems into a good alternative for administering Camptothecin, a drug whose use is otherwise severely limited by its chemical instability and poor solubility. Our choice of targeting agents allows treating tumors that express ErbB2 (Her2+ tumors) as well as Her2- tumors expressing EGFR.


Subject(s)
Antineoplastic Agents , Neoplasms , Antibodies/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , ErbB Receptors , Humans , Neoplasms/drug therapy , Neuregulins/therapeutic use , Receptor, ErbB-2 , Xenograft Model Antitumor Assays
2.
ACS Appl Mater Interfaces ; 12(49): 54980-54990, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33225687

ABSTRACT

In this work, we analyze the influence of small adsorbates on the vibrational spectra of Mg- and Zn-metal-organic framework MOF-74 by means of first-principles calculations. In particular, we consider the adsorption of four representative species of different interaction strengths: Ar, CO2, H2O, and NH3. Apart from a comprehensive characterization of the structural and energetic aspects of empty and loaded MOFs, we use a fully quantum ab initio approach to evaluate the Raman and IR activities of the normal modes, leading to the construction of the whole vibrational spectra. Under this approach, not only are we able to proceed with the complete assignment of the spectra in terms of the usual internal coordinates but also we can discern the most relevant vibrational fingerprints of the adsorbates and their impact on the whole MOF spectra. On the one hand, some of the typical vibrational modes of the small molecules are slightly shifted but still visible when adsorbed on the MOFs, especially those appearing at high wavenumbers where the empty MOFs lack IR/Raman signals. On the other hand, some bands arising from the organic ligands are affected by the presence of the absorbates, displaying non-negligible frequency shifts, in agreement with recent experiments. We find a strong correlation between all of these frequency shifts and the interaction strength of the adsorbate with the hosting framework. The findings presented in this work expand the capabilities of vibrational spectroscopy techniques to analyze porous materials and can be useful for the design of sensors and new devices based on MOF technology.

3.
ACS Appl Mater Interfaces ; 11(20): 18833-18840, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31022344

ABSTRACT

Stable molecular hydrogen isotopes, D2 and T2, are both scarce and essential in several energy, industrial, and large-scale fundamental research applications. Due to the chemical similarity of these isotopes, their extraction and purification from hydrogen has relied for decades on expensive and energy-demanding processes. However, factoring in the phenomenon of quantum sieving could provide a new route for these separations. In this work, we have explored how to separate hydrogen isotopes by adsorption taking these quantum effects into account. To this end, we have conducted adsorption measurements to test our deuterium model and performed a widespread computational screening over 210 pure-silica zeolites for D2/H2 and T2/H2 separations. Based on low-coverage adsorption properties, a reduced set of zeolites have been singled out and their performance in terms of adsorption capacity, selectivity, and dynamic behavior have been assessed. Overall, the BCT-type zeolite clearly stands out for highly selective separations of both D2 and T2 over H2, achieving the highest reported selectivities at cryogenic temperatures. We also identified other interesting zeolites for the separation of hydrogen isotopes that offer an alternative way to tackle similar isotopic separations by an aimed selection or design of porous materials.

4.
ACS Appl Mater Interfaces ; 10(24): 20512-20520, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29806451

ABSTRACT

Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO2 into energy and chemical cycles by converting CO2 into CO and O2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O2 and residual CO2. Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO2-neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

5.
Chemistry ; 24(16): 4121-4132, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29315868

ABSTRACT

Molecular simulation, through the computation of adsorption isotherms, is a useful predictive tool for the selective capacity of nanoporous materials. Generally, adsorbents are modelled as rigid frameworks, as opposed to allowing for vibrations of the lattice, and this approximation is assumed to have negligible impact on adsorption. In this work, this approach was tested in an especially challenging system by computing the adsorption of the chiral molecules 2-pentanol, 2-methylbutanol and 3-methyl-2-butanol in the all-silica and germanosilicate chiral zeolites STW and studying their lattice vibrations upon adsorption. The analysis of single- and multicomponent adsorption isotherms showed the suitability of STW-type zeolites as molecular sieves for chiral separation processes, which pose a challenging task in the chemical and pharmaceutical industries. Moreover, new experimental adsorption data validate the force field employed. The results reveal that the lattice vibrations of the all-silica framework are sorbate-independent, while those of germanosilicate STW show host-guest coupling modulated by uptake and sorbate type that disrupts the chiral recognition sites. This study indicates that the effects of intrinsic flexibility on the selective capacity of nanoporous materials may range from low to high impact, and some of them could not have been foreseen even after examination of the structural dynamics of an empty framework.

6.
Chemistry ; 23(4): 874-885, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27859759

ABSTRACT

The large-scale isolation of specific isomers of amyl alcohols for applications in the chemical, pharmaceutical, and biochemical industries represents a challenging task due to the physicochemical similarities of these structural isomers. The homochiral metal-organic framework cadmium-BINOL (BINOL=1,1'-bi-2-naphthol) is suitable for the separation of pentanol isomers, combining adsorption selectivities above 5 with adsorption capacities of around 4.5 mol kg-1 . Additionally, a slight ability for separation of racemic mixtures of 2-pentanol is also detected. This behavior is explained based on matching shapes, strength of host-guest interactions, and on the network of hydrogen bonds. The last of these explains both the relative success and shortfalls of prediction methods at high loadings (ideal adsorbed solution theory) or at low coverage (separation factors), which are therefore useful here at a qualitative level, but not accurate in quantitative terms. Finally, the high selectivity of cadmium-BINOL for 1-pentanol over its isomers offers prospects for practical applications and some room for optimizing conditions.

7.
Chemphyschem ; 16(13): 2735-2738, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26212572

ABSTRACT

The separation of pentanol isomer mixtures is shown to be very efficient using the nanoporous adsorbent zeolitic imidazolate framework ZIF-77. Through molecular simulations, we demonstrate that this material achieves a complete separation of linear from monobranched-and these from dibranched-isomers. Remarkably, the adsorption and diffusion behaviors follow the same decreasing trend, produced by the channel size of ZIF-77 and the guest shape. This separation based on molecular branching applies to alkanes and alcohols and promises to encompass numerous other functional groups.

8.
Chem Commun (Camb) ; 50(74): 10849-52, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25090236

ABSTRACT

This study reveals the efficient enantiomeric separation of bioactive molecules in the liquid phase. Chiral structure HMOF-1 separates racemic mixtures whereas heteroselectivity is observed for scalemic mixtures of ibuprofen using non-chiral MIL-47 and MIL-53. Lysine enantiomers are only separated by HMOF-1. These separations are controlled by the tight confinement of the molecules.


Subject(s)
Ibuprofen/chemistry , Lysine/chemistry , Metals/chemistry , Adsorption , Porosity , Pyridines/chemistry , Stereoisomerism
9.
J Phys Chem A ; 113(27): 7748-52, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19518056

ABSTRACT

Infrared multiple photon dissociation action spectra of the binary and ternary gas-phase complexes formed by 15-crown-5 ether with potassium cations (15c5-K(+) and 15c5-K(+)-15c5) are reported. The spectra span the 800-1500 cm(-1) infrared range. Particularly significant differences are found in the position and structure of the CO-stretching band of the two types of complexes. The computational prediction at the DFT-B3LYP/6-31G* level of theory agrees well with the experimental observations, and provides a correlation between the spectral differences and the structural changes associated with the coordination of the ether oxygens with the alkali cation. The 15c5-K(+) complex adopts a pyramidal structure, with the cation lying above the center of mass of the ether ring at a distance similar to its ionic radius. The ternary 15c5-K(+)-15c5 complex features a less tight coordination of the cation and a relative rotation between the backbones of the two crown ethers, which minimizes the intermolecular repulsions between the oxygens.

10.
Phys Chem Chem Phys ; 11(18): 3515-21, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19421556

ABSTRACT

Low-coverage adsorption properties of the metal-organic framework MIL-47 were determined by a combined experimental and simulation study. Henry constants and low coverage adsorption enthalpies of C5-C8 linear and branched alkanes, cyclohexane and benzene were measured from 120 to 240 degrees C using pulse gas chromatography. An adapted force field for linear and branched alkanes in MIL-47 was used to compute the adsorption properties of those molecules. A new set of charges was developed for simulations with benzene in MIL-47. The adsorption enthalpy of linear alkanes increases with about 7.6 kJ mol(-1) per additional -CH2- group. Henry adsorption constants of iso-alkanes are slightly lower than those of the linear chains but the MIL-47 framework is not imposing steric constraints on the branched chains. Benzene and cyclohexane are adsorbed less strongly than n-hexane as they have less hydrogen atoms. For the studied non-polar molecules, the adsorption energies are dominated by van der Waals interactions and benzene adsorption is additionally influenced by Coulombic interactions. The simulated tendencies are in good agreement with the experiments.

11.
J Chem Phys ; 124(6): 64509, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16483222

ABSTRACT

The long elusive structure of Cu(II) hydrate in aqueous solutions, classically described as a Jahn-Teller distorted octahedron and recently proposed to be a fivefold coordination structure [Pasquarello et al., Science 291, 856 (2001)], has been probed with x-ray-absorption spectroscopy by performing a combined theoretical and experimental analysis. Two absorption channels were needed to obtain a proper reproduction of the x-ray-absorption near-edge structure (XANES) region spectrum, as already observed in other Cu(II) complexes [Chaboy et al., Phys. Rev. B 71, 134208 (2005)]. The extended x-ray-absorption fine-structure (EXAFS) spectrum was analyzed as well within this approach. Quite good reproductions of both XANES and EXAFS spectra were attained for several distorted and undistorted structures previously proposed. Nevertheless, there is not a clearly preferred structure among those including four-, five-, and sixfold coordinated Cu(II) ions. Taking into account our results, as well as many more from several other authors using different techniques, the picture of a distorted octahedron for the Cu(II) hexahydrate in aqueous solution, paradigm of the Jahn-Teller effect, is no longer supported. In solution a dynamical view where the different structures exchange among themselves is the picture that better suits the results presented here.


Subject(s)
Biopolymers/chemistry , Copper/chemistry , Water/chemistry , Cations, Divalent , Ligands , Solutions/chemistry , Spectrometry, X-Ray Emission
12.
Inorg Chem ; 43(21): 6674-83, 2004 Oct 18.
Article in English | MEDLINE | ID: mdl-15476367

ABSTRACT

Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.


Subject(s)
Copper/chemistry , Histidine/chemistry , Metalloproteins/chemistry , Models, Chemical , Organometallic Compounds/chemistry , Absorptiometry, Photon , Binding Sites , Dipeptides/chemistry , Glycine/chemistry , Ligands
13.
J Am Chem Soc ; 124(36): 10911-20, 2002 Sep 11.
Article in English | MEDLINE | ID: mdl-12207547

ABSTRACT

Extended X-ray absorption fine structure (EXAFS) spectra of Cr(3+) and Rh(3+) in aqueous solution are analyzed and compared with computed spectra derived from structural results obtained by molecular dynamics (MD) simulation. This procedure quantifies the reliability of the EXAFS structural determination when applied to ions in solution. It provides guidelines for interpreting experimental spectra of octahedrally coordinated metal cations in aqueous solution. A set of relationships among Debye-Waller factors is proposed on the basis of MD results to reduce the number of independent fit parameters. The determination of the second hydration shell is examined. Calculated XANES spectra compare well with experimental ones. Indeed, the splitting observed on the main peak of the Rh K-edge was anticipated by the calculations. Simulated spectra from MD structures of increasing cluster size show a relationship between the second hydration shell and features of the XANES region at energies just above the edge. The combination of quantum and statistical calculations with the XANES spectrum is found to be very fruitful to get insight into the quantitative estimation of structural properties of electrolyte solutions.

SELECTION OF CITATIONS
SEARCH DETAIL