Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
G Ital Nefrol ; 41(4)2024 Aug 26.
Article in Italian | MEDLINE | ID: mdl-39243415

ABSTRACT

The arteriovenous fistula (AVF) represents the favorite vascular access in individuals with chronic kidney disease (CKD). Because AVF is a guarantee of survival for these patients, proper surgical packing and a timely follow-up program is crucial. Although a good objective examination of the limb site of FAV provides useful information both in planning the fistula surgery and in its surveillance and monitoring, it is now well established that the advent of instrumental diagnostics (ultrasonography, digital angiography, Angio-TC, MRI) has contributed significantly to improving primary and secondary patency of FAV and early diagnosis of vascular access complications. In this area, clinical thermography, a noninvasive and nondestructive diagnostic technique for assessing minute surface temperature differences, has shown good potential for the assessment of AVF. In fact, thermographic analysis of a limb site of AVF shows an increase in temperature at the site of the anastomosis and along the course of the arterialized vein. In this article we report our experience on the use of thermography in preoperative evaluation and postoperative surgical packing of an AVF. Further studies could validate the use of clinical thermography as a diagnostic technique to be used in the field of hemodialysis vascular accesses.


Subject(s)
Arteriovenous Shunt, Surgical , Renal Dialysis , Thermography , Thermography/methods , Humans , Male , Middle Aged
2.
Brain Sci ; 14(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39199453

ABSTRACT

Motor impairment is a common issue in stroke patients, often affecting the upper limbs. To this standpoint, robotic neurorehabilitation has shown to be highly effective for motor function recovery. Notably, Machine learning (ML) may be a powerful technique able to identify the optimal kind and intensity of rehabilitation treatments to maximize the outcomes. This retrospective observational research aims to assess the efficacy of robotic devices in facilitating the functional rehabilitation of upper limbs in stroke patients through ML models. Specifically, clinical scales, such as the Fugl-Meyer Assessment (A-D) (FMA), the Frenchay Arm Test (FAT), and the Barthel Index (BI), were used to assess the patients' condition before and after robotic therapy. The values of these scales were predicted based on the patients' clinical and demographic data obtained before the treatment. The findings showed that ML models have high accuracy in predicting the FMA, FAT, and BI, with R-squared (R2) values of 0.79, 0.57, and 0.74, respectively. The findings of this study suggest that integrating ML into robotic therapy may have the capacity to establish a personalized and streamlined clinical practice, leading to significant improvements in patients' quality of life and the long-term sustainability of the healthcare system.

3.
Clocks Sleep ; 6(3): 322-337, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39189190

ABSTRACT

Sleep quality (SQ) is a crucial aspect of overall health. Poor sleep quality may cause cognitive impairment, mood disturbances, and an increased risk of chronic diseases. Therefore, assessing sleep quality helps identify individuals at risk and develop effective interventions. SQ has been demonstrated to affect heart rate variability (HRV) and skin temperature even during wakefulness. In this perspective, using wearables and contactless technologies to continuously monitor HR and skin temperature is highly suited for assessing objective SQ. However, studies modeling the relationship linking HRV and skin temperature metrics evaluated during wakefulness to predict SQ are lacking. This study aims to develop machine learning models based on HRV and skin temperature that estimate SQ as assessed by the Pittsburgh Sleep Quality Index (PSQI). HRV was measured with a wearable sensor, and facial skin temperature was measured by infrared thermal imaging. Classification models based on unimodal and multimodal HRV and skin temperature were developed. A Support Vector Machine applied to multimodal HRV and skin temperature delivered the best classification accuracy, 83.4%. This study can pave the way for the employment of wearable and contactless technologies to monitor SQ for ergonomic applications. The proposed method significantly advances the field by achieving a higher classification accuracy than existing state-of-the-art methods. Our multimodal approach leverages the synergistic effects of HRV and skin temperature metrics, thus providing a more comprehensive assessment of SQ. Quantitative performance indicators, such as the 83.4% classification accuracy, underscore the robustness and potential of our method in accurately predicting sleep quality using non-intrusive measurements taken during wakefulness.

4.
Physiol Behav ; : 114663, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128618

ABSTRACT

INTRODUCTION: This study aimed to investigate the effects of normobaric hypoxia (NH) and hypobaric hypoxia (HH) on associative memory performance for emotionally valenced stimuli. METHODS: Two experiments were conducted. In Study 1, n=18 undergraduates performed an associative memory task under three NH conditions (FiO2= 20.9%, 15.1%, 13.6%) using a tent with a hypoxic generator. In Study 2, n=20 participants were assessed in a field study at various altitudes on the Himalayan mountains, including the Pyramid Laboratory (5,000 meters above sea level), using functional Near-Infrared Spectroscopy (fNIRS) and behavioral assessments. RESULTS: Study 1 revealed no significant differences in recognition accuracy across NH conditions. However, Study 2 showed a complex relationship between altitude and memory for emotionally valenced stimuli. At lower altitudes, participants more accurately recognized emotional stimuli compared to neutral ones, a trend that reversed at higher altitudes. Brain oxygenation varied with altitude, indicating adaptive cognitive processing, as revealed by fNIRS measurements. CONCLUSIONS: These findings suggest that hypoxia affects associative memory and emotional processing in an altitude-dependent manner, highlighting adaptive cognitive mechanisms. Understanding the effects of hypobaric hypoxia on cognition and memory can help develop strategies to mitigate its impact in high-altitude and hypoxic environments.

5.
Entropy (Basel) ; 26(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39056940

ABSTRACT

A stroke represents a significant medical condition characterized by the sudden interruption of blood flow to the brain, leading to cellular damage or death. The impact of stroke on individuals can vary from mild impairments to severe disability. Treatment for stroke often focuses on gait rehabilitation. Notably, assessing muscle activation and kinematics patterns using electromyography (EMG) and stereophotogrammetry, respectively, during walking can provide information regarding pathological gait conditions. The concurrent measurement of EMG and kinematics can help in understanding disfunction in the contribution of specific muscles to different phases of gait. To this aim, complexity metrics (e.g., sample entropy; approximate entropy; spectral entropy) applied to EMG and kinematics have been demonstrated to be effective in identifying abnormal conditions. Moreover, the conditional entropy between EMG and kinematics can identify the relationship between gait data and muscle activation patterns. This study aims to utilize several machine learning classifiers to distinguish individuals with stroke from healthy controls based on kinematics and EMG complexity measures. The cubic support vector machine applied to EMG metrics delivered the best classification results reaching 99.85% of accuracy. This method could assist clinicians in monitoring the recovery of motor impairments for stroke patients.

6.
Sensors (Basel) ; 24(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793841

ABSTRACT

Recently, there has been an increasing fascination for employing radio frequency (RF) energy harvesting techniques to energize various low-power devices by harnessing the ambient RF energy in the surroundings. This work outlines a novel advancement in RF energy harvesting (RFEH) technology, intending to power portable gadgets with minimal operating power demands. A high-gain receiver microstrip patch antenna was designed and tested to capture ambient RF residue, operating at 2450 MHz. Similarly, a two-stage Dickson voltage booster was developed and employed with the RFEH to transform the received RF signals into useful DC voltage signals. Additionally, an LC series circuit was utilized to ensure impedance matching between the antenna and rectifier, facilitating the extraction of maximum power from the developed prototype. The findings indicate that the developed rectifier attained a peak power conversion efficiency (PCE) of 64% when operating at an input power level of 0 dBm. During experimentation, the voltage booster demonstrated its capability to rectify a minimum input AC signal of only 50 mV, yielding a corresponding 180 mV output DC signal. Moreover, the maximum power of 4.60 µW was achieved when subjected to an input AC signal of 1500 mV with a load resistance of 470 kΩ. Finally, the devised RFEH was also tested in an open environment, receiving signals from Wi-Fi modems positioned at varying distances for evaluation.

7.
Biol Psychol ; 189: 108791, 2024 May.
Article in English | MEDLINE | ID: mdl-38599369

ABSTRACT

Human body core temperature is tightly regulated within approximately 37 °C. Global near surface temperature has increased by over 1.2 °C between 1850 and 2020. In light of the challenge this poses to human thermoregulation, the present perspective article sought to provide an overview on the effects of varying ambient and body temperature on cognitive, affective, and behavioural domains of functioning. To this end, an overview of observational and experimental studies in healthy individuals and individuals with mental disorders was provided. Within body core temperature at approximately 37 °C, relatively lower ambient and skin temperatures appear to evoke a need for social connection, whereas comparably higher temperatures appear to facilitate notions of other as closer and more sociable. Above-average ambient temperatures are associated with increased conflicts as well as incident psychotic and depressive symptoms, mental disorders, and suicide. With mild hypo- and hyperthermia, paradoxical effects are observed: whereas the acute states are generally characterised by impairments in cognitive performance, anxiety, and irritability, individuals with depression experience longer-term symptom improvements with treatments deliberately inducing these states for brief amounts of time. When taken together, it has thus become clear that temperature is inexorably associated with human cognition, affect, and (potentially) behaviour. Given the projected increase in global warming, further research into the affective and behavioural sequelae of heat and the mechanisms translating it into mental health outcomes is urgently warranted.


Subject(s)
Affect , Cognition , Humans , Cognition/physiology , Affect/physiology , Body Temperature Regulation/physiology , Temperature , Body Temperature/physiology , Mental Disorders/psychology , Mental Disorders/physiopathology , Behavior/physiology
8.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475034

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a range of motor and non-motor symptoms. One of the notable non-motor symptoms of PD is the presence of vocal disorders, attributed to the underlying pathophysiological changes in the neural control of the laryngeal and vocal tract musculature. From this perspective, the integration of machine learning (ML) techniques in the analysis of speech signals has significantly contributed to the detection and diagnosis of PD. Particularly, MEL Frequency Cepstral Coefficients (MFCCs) and Gammatone Frequency Cepstral Coefficients (GTCCs) are both feature extraction techniques commonly used in the field of speech and audio signal processing that could exhibit great potential for vocal disorder identification. This study presents a novel approach to the early detection of PD through ML applied to speech analysis, leveraging both MFCCs and GTCCs. The recordings contained in the Mobile Device Voice Recordings at King's College London (MDVR-KCL) dataset were used. These recordings were collected from healthy individuals and PD patients while they read a passage and during a spontaneous conversation on the phone. Particularly, the speech data regarding the spontaneous dialogue task were processed through speaker diarization, a technique that partitions an audio stream into homogeneous segments according to speaker identity. The ML applied to MFCCS and GTCCs allowed us to classify PD patients with a test accuracy of 92.3%. This research further demonstrates the potential to employ mobile phones as a non-invasive, cost-effective tool for the early detection of PD, significantly improving patient prognosis and quality of life.


Subject(s)
Parkinson Disease , Speech , Humans , Parkinson Disease/diagnosis , Quality of Life , Machine Learning , Laryngeal Muscles
9.
Phys Eng Sci Med ; 47(2): 385-401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38231358

ABSTRACT

The power consumption of portable gadgets, implantable medical devices (IMDs) and wireless sensor nodes (WSNs) has reduced significantly with the ongoing progression in low-power electronics and the swift advancement in nano and microfabrication. Energy harvesting techniques that extract and convert ambient energy into electrical power have been favored to operate such low-power devices as an alternative to batteries. Due to the expanded availability of radio frequency (RF) energy residue in the surroundings, radio frequency energy harvesters (RFEHs) for low-power devices have garnered notable attention in recent times. This work establishes a review study of RFEHs developed for the utilization of low-power devices. From the modest single band to the complex multiband circuitry, the work reviews state of the art of required circuitry for RFEH that contains a receiving antenna, impedance matching circuit, and an AC-DC rectifier. Furthermore, the advantages and disadvantages associated with various circuit architectures are comprehensively discussed. Moreover, the reported receiving antenna, impedance matching circuit, and an AC-DC rectifier are also compared to draw conclusions towards their implementations in RFEHs for sensors and biomedical devices applications.


Subject(s)
Electric Power Supplies , Radio Waves , Wireless Technology , Equipment Design , Wireless Technology/instrumentation
10.
Front Public Health ; 11: 1308404, 2023.
Article in English | MEDLINE | ID: mdl-38026271

ABSTRACT

COVID-19 is an epidemic disease that results in death and significantly affects the older adult and those afflicted with chronic medical conditions. Diabetes medication and high blood glucose levels are significant predictors of COVID-19-related death or disease severity. Diabetic individuals, particularly those with preexisting comorbidities or geriatric patients, are at a higher risk of COVID-19 infection, including hospitalization, ICU admission, and death, than those without Diabetes. Everyone's lives have been significantly changed due to the COVID-19 outbreak. Identifying patients infected with COVID-19 in a timely manner is critical to overcoming this challenge. The Real-Time Polymerase Chain Reaction (RT-PCR) diagnostic assay is currently the gold standard for COVID-19 detection. However, RT-PCR is a time-consuming and costly technique requiring a lab kit that is difficult to get in crises and epidemics. This work suggests the CIDICXR-Net50 model, a ResNet-50-based Transfer Learning (TL) method for COVID-19 detection via Chest X-ray (CXR) image classification. The presented model is developed by substituting the final ResNet-50 classifier layer with a new classification head. The model is trained on 3,923 chest X-ray images comprising a substantial dataset of 1,360 viral pneumonia, 1,363 normal, and 1,200 COVID-19 CXR images. The proposed model's performance is evaluated in contrast to the results of six other innovative pre-trained models. The proposed CIDICXR-Net50 model attained 99.11% accuracy on the provided dataset while maintaining 99.15% precision and recall. This study also explores potential relationships between COVID-19 and Diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Pneumonia, Viral , Humans , Aged , COVID-19/diagnosis , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Machine Learning
11.
Biomimetics (Basel) ; 8(6)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37887606

ABSTRACT

Social robots represent a valid opportunity to manage the diagnosis, treatment, care, and support of older people with dementia. The aim of this study is to validate the Mini-Mental State Examination (MMSE) test administered by the Pepper robot equipped with systems to detect psychophysical and emotional states in older patients. Our main result is that the Pepper robot is capable of administering the MMSE and that cognitive status is not a determinant in the effective use of a social robot. People with mild cognitive impairment appreciate the robot, as it interacts with them. Acceptability does not relate strictly to the user experience, but the willingness to interact with the robot is an important variable for engagement. We demonstrate the feasibility of a novel approach that, in the future, could lead to more natural human-machine interaction when delivering cognitive tests with the aid of a social robot and a Computational Psychophysiology Module (CPM).

12.
Brain Sci ; 13(10)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37891858

ABSTRACT

The aim of this study is to evaluate the effectiveness of electrosuit therapy in the clinical treatment of children with Cerebral Palsy, focusing on the effect of the therapy on spasticity and trunk control. Moreover, the compliance of caregivers with respect to the use of the tool was investigated. During the period ranging from 2019 to 2022, a total of 26 children (18 M and 8 F), clinically stable and affected by CP and attending the Neurorehabilitation Unit of the "Padre Pio Foundation and Rehabilitation Centers", were enrolled in this study. A subset of 12 patients bought or rented the device; thus, they received the administration of the EMS-based therapy for one month, whereas the others received only one-hour training to evaluate the feasibility (by the caregivers) and short-term effects. The Gross Motor Function Classification System was utilized to evaluate gross motor functions and to classify the study sample, while the MAS and the LSS were employed to assess the outcomes of the EMS-based therapy. Moreover, between 80% and 90% of the study sample were satisfied with the safety, ease of use, comfort, adjustment, and after-sales service. Following a single session of electrical stimulation with EMS, patients exhibited a statistically significant enhancement in trunk control. For those who continued this study, the subscale of the QUEST with the best score was adaptability (0.74 ± 0.85), followed by competence (0.67 ± 0.70) and self-esteem (0.59 ± 0.60). This study investigates the impact of the employment of the EMS on CP children's ability to maintain trunk control. Specifically, after undergoing a single EMS session, LSS showed a discernible improvement in children's trunk control. In addition, the QUEST and the PIADS questionnaires demonstrated a good acceptability and satisfaction of the garment by the patients and the caregivers.

13.
Phys Eng Sci Med ; 46(4): 1573-1588, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37644362

ABSTRACT

In recent decades, an increasing number of studies on psychophysiology and, in general, on clinical medicine has employed the technique of facial thermal infrared imaging (IRI), which allows to obtain information about the emotional and physical states of the subjects in a completely non-invasive and contactless fashion. Several regions of interest (ROIs) have been reported in literature as salient areas for the psychophysiological characterization of a subject (i.e. nose tip and glabella ROIs). There is however a lack of studies focusing on the functional correlation among these ROIs and about the physiological basis of the relation existing between thermal IRI and vital signals, such as the electrodermal activity, i.e. the galvanic skin response (GSR). The present study offers a new methodology able to assess the functional connection between salient seed ROIs of thermal IRI and all the pixel of the face. The same approach was also applied considering as seed signal the GSR and its phasic and tonic components. Seed correlation analysis on 63 healthy volunteers demonstrated the presence of a common pathway regulating the facial thermal functionality and the electrodermal activity. The procedure was also tested on a pathological case study, finding a completely different pattern compared to the healthy cases. The method represents a promising tool in neurology, physiology and applied neurosciences.


Subject(s)
Neurosciences , Psychophysiology , Humans , Psychophysiology/methods , Galvanic Skin Response , Diagnostic Imaging , Forehead
14.
Bioengineering (Basel) ; 10(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37370612

ABSTRACT

Electrical stimulation through surface electrodes is a non-invasive therapeutic technique used to improve voluntary motor control and reduce pain and spasticity in patients with central nervous system injuries. The Exopulse Mollii Suit (EMS) is a non-invasive full-body suit with integrated electrodes designed for self-administered electrical stimulation to reduce spasticity and promote flexibility. The EMS has been evaluated in several clinical trials with positive findings, indicating its potential in rehabilitation. This review investigates the effectiveness of the EMS for rehabilitation and its acceptability by patients. The literature was collected through several databases following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Positive effects of the garment on improving motor functions and reducing spasticity have been shown to be related to the duration of the administration period and to the dosage of the treatment, which, in turn, depend on the individual's condition and the treatment goals. Moreover, patients reported wellbeing during stimulation and a muscle-relaxing effect on the affected limb. Although additional research is required to determine the efficacy of this device, the reviewed literature highlights the EMS potential to improve the motor capabilities of neurological patients in clinical practice.

15.
Phys Eng Sci Med ; 46(1): 325-337, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36715852

ABSTRACT

Surgical resection is one of the most relevant practices in neurosurgery. Finding the correct surgical extent of the tumor is a key question and so far several techniques have been employed to assist the neurosurgeon in preserving the maximum amount of healthy tissue. Some of these methods are invasive for patients, not always allowing high precision in the detection of the tumor area. The aim of this study is to overcome these limitations, developing machine learning based models, relying on features obtained from a contactless and non-invasive technique, the thermal infrared (IR) imaging. The thermal IR videos of thirteen patients with heterogeneous tumors were recorded in the intraoperative context. Time (TD)- and frequency (FD)-domain features were extracted and fed different machine learning models. Models relying on FD features have proven to be the best solutions for the optimal detection of the tumor area (Average Accuracy = 90.45%; Average Sensitivity = 84.64%; Average Specificity = 93,74%). The obtained results highlight the possibility to accurately detect the tumor lesion boundary with a completely non-invasive, contactless, and portable technology, revealing thermal IR imaging as a very promising tool for the neurosurgeon.


Subject(s)
Neoplasms , Neurosurgery , Humans , Machine Learning , Neurosurgical Procedures , Diagnostic Imaging
16.
Sensors (Basel) ; 23(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679631

ABSTRACT

Surface electromyography (sEMG) is the acquisition, from the skin, of the electrical signal produced by muscle activation. Usually, sEMG is measured through electrodes with electrolytic gel, which often causes skin irritation. Capacitive contactless electrodes have been developed to overcome this limitation. However, contactless EMG devices are still sensitive to motion artifacts and often not comfortable for long monitoring. In this study, a non-invasive contactless method to estimate parameters indicative of muscular activity and fatigue, as they are assessed by EMG, through infrared thermal imaging (IRI) and cross-validated machine learning (ML) approaches is described. Particularly, 10 healthy participants underwent five series of bodyweight squats until exhaustion interspersed by 1 min of rest. During exercising, the vastus medialis activity and its temperature were measured through sEMG and IRI, respectively. The EMG average rectified value (ARV) and the median frequency of the power spectral density (MDF) of each series were estimated through several ML approaches applied to IRI features, obtaining good estimation performances (r = 0.886, p < 0.001 for ARV, and r = 0.661, p < 0.001 for MDF). Although EMG and IRI measure physiological processes of a different nature and are not interchangeable, these results suggest a potential link between skin temperature and muscle activity and fatigue, fostering the employment of contactless methods to deliver metrics of muscular activity in a non-invasive and comfortable manner in sports and clinical applications.


Subject(s)
Muscle, Skeletal , Quadriceps Muscle , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Electromyography/methods , Quadriceps Muscle/physiology , Fatigue , Supervised Machine Learning , Muscle Fatigue/physiology
17.
Front Artif Intell ; 6: 1292466, 2023.
Article in English | MEDLINE | ID: mdl-38274052

ABSTRACT

In the last years, several techniques of artificial intelligence have been applied to data from COVID-19. In addition to the symptoms related to COVID-19, many individuals with SARS-CoV-2 infection have described various long-lasting symptoms, now termed Long COVID. In this context, artificial intelligence techniques have been utilized to analyze data from Long COVID patients in order to assist doctors and alleviate the considerable strain on care and rehabilitation facilities. In this paper, we explore the impact of the machine learning methodologies that have been applied to analyze the many aspects of Long COVID syndrome, from clinical presentation through diagnosis. We also include the text mining techniques used to extract insights and trends from large amounts of text data related to Long COVID. Finally, we critically compare the various approaches and outline the work that has to be done to create a robust artificial intelligence approach for efficient diagnosis and treatment of Long COVID.

19.
J Clin Med ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431267

ABSTRACT

Cerebral palsy (CP) is a non-progressive neurologic condition that causes gait limitations, spasticity, and impaired balance and coordination. Robotic-assisted gait training (RAGT) has become a common rehabilitation tool employed to improve the gait pattern of people with neurological impairments. However, few studies have demonstrated the effectiveness of RAGT in children with CP and its neurological effects through portable neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS). The aim of the study is to evaluate the neurophysiological processes elicited by RAGT in children with CP through fNIRS, which was acquired during three sessions in one month. The repeated measure ANOVA was applied to the ß-values delivered by the General Linear Model (GLM) analysis used for fNIRS data analysis, showing significant differences in the activation of both prefrontal cortex (F (1.652, 6.606) = 7.638; p = 0.022), and sensorimotor cortex (F (1.294, 5.175) = 11.92; p = 0.014) during the different RAGT sessions. In addition, a cross-validated Machine Learning (ML) framework was implemented to estimate the gross motor function measure (GMFM-88) from the GLM ß-values, obtaining an estimation with a correlation coefficient r = 0.78. This approach can be used to tailor clinical treatment to each child, improving the effectiveness of rehabilitation for children with CP.

20.
Article in English | MEDLINE | ID: mdl-36429941

ABSTRACT

Cerebral palsy (CP) is a non-progressive neurologic pathology representing a leading cause of spasticity and concerning gait impairments in children. Robotic-assisted gait training (RAGT) is widely employed to treat this pathology to improve children's gait pattern. Importantly, the effectiveness of the therapy is strictly related to the engagement of the patient in the rehabilitation process, which depends on his/her psychophysiological state. The aim of the study is to evaluate the psychophysiological condition of children with CP during RAGT through infrared thermography (IRT), which was acquired during three sessions in one month. A repeated measure ANOVA was performed (i.e., mean value, standard deviation, and sample entropy) extracted from the temperature time course collected over the nose and corrugator, which are known to be indicative of the psychophysiological state of the individual. Concerning the corrugator, significant differences were found for the sample entropy (F (1.477, 5.907) = 6.888; p = 0.033) and for the mean value (F (1.425, 5.7) = 5.88; p = 0.047). Regarding the nose tip, the sample entropy showed significant differences (F (1.134, 4.536) = 11.5; p = 0.041). The findings from this study suggests that this approach can be used to evaluate in a contactless manner the psychophysiological condition of the children with CP during RAGT, allowing to monitor their engagement to the therapy, increasing the benefits of the treatment.


Subject(s)
Cerebral Palsy , Gait Disorders, Neurologic , Robotic Surgical Procedures , Humans , Child , Female , Male , Cerebral Palsy/diagnostic imaging , Cerebral Palsy/rehabilitation , Exercise Therapy/methods , Gait/physiology
SELECTION OF CITATIONS
SEARCH DETAIL