Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 34(18): 8138-8152, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36186668

ABSTRACT

Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (∼1.7 Å) axially oriented B2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReB x compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.

2.
J Phys Chem C Nanomater Interfaces ; 125(42): 23445-23456, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34737841

ABSTRACT

Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.

3.
Sci Adv ; 7(42): eabj0954, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34644116

ABSTRACT

Colloidal supraparticles are finite, spherical assemblies of many primary particles. To take advantage of their emergent functionalities, such supraparticles must retain their structural integrity. Here, we investigate their size-dependent mechanical properties via nanoindentation. We find that the deformation resistance inversely scales with the primary particle diameter, while the work of deformation is dependent on the supraparticle diameter. We adopt the Griffith theory to such particulate systems to provide a predictive scaling to relate the fracture stress to the geometry of supraparticles. The interplay between primary particle material and cohesive interparticle forces dictates the mechanical properties of supraparticles. We find that enhanced stability, associated with ductile fracture, can be achieved if supraparticles are engineered to dissipate more energy via deformation of primary particles than breaking of interparticle bonds. Our work provides a coherent framework to analyze, predict, and design the mechanical properties of colloidal supraparticles.

4.
Polymers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208302

ABSTRACT

Diamond-like carbon (DLC) coatings have the potential to reduce implant wear and thus to contribute to avoiding premature failure and increase service life of total knee replacements (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While a detailed characterization of the tribological behavior is the subject of part II, part I focusses on the deposition of pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coatings (a-C:H:W) and the detailed characterization of their chemical, cytological, mechanical and adhesion behavior. The coatings are fabricated by physical vapor deposition (PVD) and display typical DLC morphology and composition, as verified by focused ion beam scanning electron microscopy and Raman spectroscopy. Their roughness is higher than that of the plain substrates. Initial screening with contact angle and surface tension as well as in vitro testing by indirect and direct application indicate favorable cytocompatibility. The DLC coatings feature excellent mechanical properties with a substantial enhancement of indentation hardness and elastic modulus ratios. The adhesion of the coatings as determined in modified scratch tests can be considered as sufficient for the use in TKAs.

5.
Polymers (Basel) ; 13(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198895

ABSTRACT

Diamond-like carbon coatings may decrease implant wear, therefore, they are helping to reduce aseptic loosening and increase service life of total knee arthroplasties (TKAs). This two-part study addresses the development of such coatings for ultrahigh molecular weight polyethylene (UHMWPE) tibial inlays as well as cobalt-chromium-molybdenum (CoCr) and titanium (Ti64) alloy femoral components. While the deposition of a pure (a-C:H) and tungsten-doped hydrogen-containing amorphous carbon coating (a-C:H:W) as well as the detailed characterization of mechanical and adhesion properties were the subject of Part I, the tribological behavior is studied in Part II. Pin-on-disk tests are performed under artificial synovial fluid lubrication. Numerical elastohydrodynamic lubrication modeling is used to show the representability of contact conditions for TKAs and to assess the influence of coatings on lubrication conditions. The wear behavior is characterized by means of light and laser scanning microscopy, Raman spectroscopy, scanning electron microscopy and particle analyses. Although the coating leads to an increase in friction due to the considerably higher roughness, especially the UHMWPE wear is significantly reduced up to a factor of 49% (CoCr) and 77% (Ti64). Thereby, the coating shows continuous wear and no sudden failure or spallation of larger wear particles. This demonstrated the great potential of amorphous carbon coatings for knee replacements.

6.
Nat Commun ; 10(1): 2994, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278267

ABSTRACT

High-pressure synthesis in diamond anvil cells can yield unique compounds with advanced properties, but often they are either unrecoverable at ambient conditions or produced in quantity insufficient for properties characterization. Here we report the synthesis of metallic, ultraincompressible (K0 = 428(10) GPa), and very hard (nanoindentation hardness 36.7(8) GPa) rhenium nitride pernitride Re2(N2)(N)2. Unlike known transition metals pernitrides Re2(N2)(N)2 contains both pernitride N24- and discrete N3- anions, which explains its exceptional properties. Re2(N2)(N)2 can be obtained via a reaction between rhenium and nitrogen in a diamond anvil cell at pressures from 40 to 90 GPa and is recoverable at ambient conditions. We develop a route to scale up its synthesis through a reaction between rhenium and ammonium azide, NH4N3, in a large-volume press at 33 GPa. Although metallic bonding is typically seen incompatible with intrinsic hardness, Re2(N2)(N)2 turned to be at a threshold for superhard materials.

7.
Materials (Basel) ; 12(10)2019 May 18.
Article in English | MEDLINE | ID: mdl-31109027

ABSTRACT

The remarkable mechanical performance of biominerals often relies on distinct crystallographic textures, which complicate the determination of the nanohardness from indentations with the standard non-rotational-symmetrical Berkovich punch. Due to the anisotropy of the biomineral to be probed, an azimuthal dependence of the hardness arises. This typically increases the standard deviation of the reported hardness values of biominerals and impedes comparison of hardness values across the literature and, as a result, across species. In this paper, we demonstrate that an azimuthally independent nanohardness determination can be achieved by using a conical indenter. It is also found that conical and Berkovich indentations yield slightly different hardness values because they result in different pile-up behaviors and because of technical limitations on the fabrication of perfectly equivalent geometries. For biogenic crystals, this deviation of hardness values between indenters is much lower than the azimuthal variation in non-rotational-symmetrical Berkovich indentations.

8.
Scanning ; 36(5): 526-9, 2014.
Article in English | MEDLINE | ID: mdl-25131510

ABSTRACT

A series of articles by Kaupp et al. have recently been published in "Scanning," containing erroneous claims about the curvature of pyramidal nanoindentation loading curves. The present paper recalls the theoretical reasons why, for self-similar indenter shapes like pyramidal or conical indentations, the load scales with the indentation depth squared. Furthermore, experimental evidence for that behavior is provided for a wide variety of materials, ranging from ceramics to metals and polymers.

SELECTION OF CITATIONS
SEARCH DETAIL