Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 100: 55-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081392

ABSTRACT

Exposures to ambient ultrafine particle (UFP) air pollution (AP) during the early postnatal period in mice (equivalent to human third trimester brain development) produce male-biased changes in brain structure, including ventriculomegaly, reduced brain myelination, alterations in neurotransmitters and glial activation, as well as impulsive-like behavioral characteristics, all of which are also features characteristic of male-biased neurodevelopmental disorders (NDDs). The purpose of this study was to ascertain the extent to which inhaled Cu, a common contaminant of AP that is also dysregulated across multiple NDDs, might contribute to these phenotypes. For this purpose, C57BL/6J mice were exposed from postnatal days 4-7 and 10-13 for 4 hr/day to inhaled copper oxide (CuxOy) nanoparticles at an environmentally relevant concentration averaging 171.9 ng/m3. Changes in brain metal homeostasis and neurotransmitter levels were determined following termination of exposure (postnatal day 14), while behavioral changes were assessed in adulthood. CuxOy inhalation modified cortical metal homeostasis and produced male-biased disruption of striatal neurotransmitters, with marked increases in dopaminergic function, as well as excitatory/inhibitory imbalance and reductions in serotonergic function. Impulsive-like behaviors in a fixed ratio (FR) waiting-for-reward schedule and a fixed interval (FI) schedule of food reward occurred in both sexes, but more prominently in males, effects which could not be attributed to altered locomotor activity or short-term memory. Inhaled Cu as from AP exposures, at environmentally relevant levels experienced during development, may contribute to impaired brain function, as shown by its ability to disrupt brain metal homeostasis and striatal neurotransmission. In addition, its ability to evoke impulsive-like behavior, particularly in male offspring, may be related to striatal dopaminergic dysfunction that is known to mediate such behaviors. As such, regulation of air Cu levels may be protective of public health.


Subject(s)
Air Pollutants , Air Pollution , Female , Humans , Animals , Male , Mice , Air Pollutants/toxicity , Copper , Mice, Inbred C57BL , Particulate Matter , Neurotransmitter Agents
3.
Front Toxicol ; 4: 971970, 2022.
Article in English | MEDLINE | ID: mdl-36105436

ABSTRACT

Pregnancy is a unique critical window with nearly ubiquitous exposure to low concentrations of endocrine disrupting chemicals, such as per- and poly-fluoroalkyl substances (PFAS). Human and animal research suggests that PFAS compounds disrupt hypothalamic-pituitary-adrenal axis function, with some evidence of altered "anxiety-like" behavior, but little is known about the potential effects on maternal mental health following exposures during pregnancy. Evaluating the consequences of gestational PFAS exposures on maternal health is essential, because approximately 1 in 10 women experience postpartum depression, often with increased anxiety. To address this gap, dams were exposed to a low dose, 0.1 mg/kg, of perfluorooctanoic acid (PFOA) from gestational day 0 to birth. Maternal behavior was then observed from postnatal days 5-9, and "anxiety-like" behavior was measured using open field spontaneous locomotor behavior and elevated plus maze following weaning. No difference was observed in the litter size or sex of offspring. Gestational PFOA exposure altered maternal behavior. Despite similar nursing durations, PFOA dams spent more time nursing in a flat posture and on their side, and less time in kyphosis. Despite significantly quicker first contact, PFOA dams did not return pups to the nest quicker, indicating reduced retrieval latency. At weaning, dams displayed increased "anxiety-like" behaviors in the elevated plus maze with a significantly higher mean duration in the closed arms and reduced choice frequency with significantly lower number of entries in the closed and open arms. PFOA dams showed reductions in ambulatory movement across the session. Pregnancy exposure to PFOA altered both maternal and "anxiety-like" behavior in dams. Additional assays focused on depression-associated behaviors, such as forced swim, anhedonia, and social preference, will further delineate behavioral mechanisms. Further research on the effects of environmental contaminant exposures during pregnancy should investigate how co-exposures to other risk factors, such as stress, may enhance behavioral toxicity. Understanding how environmental contaminant exposure during pregnancy effects maternal depression-associated, and/or "anxiety-like" behavior is necessary for the public health protection of women.

4.
Part Fibre Toxicol ; 19(1): 56, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945578

ABSTRACT

BACKGROUND: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS: Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS: Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.


Subject(s)
Air Pollutants , Air Pollution , Neurotoxicity Syndromes , Air Pollutants/analysis , Air Pollutants/toxicity , Animals , Brain , Female , Humans , Iron/pharmacology , Male , Metals , Mice , Neurotoxicity Syndromes/etiology , Neurotransmitter Agents/pharmacology , Particulate Matter/analysis , Particulate Matter/toxicity
5.
Front Aging ; 3: 861686, 2022.
Article in English | MEDLINE | ID: mdl-35874276

ABSTRACT

Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.

6.
Toxics ; 9(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34941779

ABSTRACT

Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.

7.
Toxicol Sci ; 180(1): 175-185, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33372994

ABSTRACT

Epidemiological and experimental studies have associated oral and systemic exposures to the herbicide paraquat (PQ) with Parkinson's disease. Despite recognition that airborne particles and solutes can be directly translocated to the brain via olfactory neurons, the potential for inhaled PQ to cause olfactory impairment has not been investigated. This study sought to determine if prolonged low-dose inhalation exposure to PQ would lead to disposition to the brain and olfactory impairment, a prodromal feature of Parkinson's disease. Adult male and female C57BL/6J mice were exposed to PQ aerosols in a whole-body inhalation chamber for 4 h/day, 5 days/week for 4 weeks. Subsets of mice were sacrificed during and after exposure and PQ concentrations in various brain regions (olfactory bulb, striatum, midbrain, and cerebellum) lung, and kidney were quantified via mass spectrometry. Alterations in olfaction were examined using an olfactory discrimination paradigm. PQ inhalation resulted in an appreciable burden in all examined brain regions, with the highest burden observed in the olfactory bulb, consistent with nasal olfactory uptake. PQ was also detected in the lung and kidney, yet PQ levels in all tissues returned to control values within 4 weeks post exposure. PQ inhalation caused persistent male-specific deficits in olfactory discrimination. No effects were observed in females. These data support the importance of route of exposure in determination of safety estimates for neurotoxic pesticides, such as PQ. Accurate estimation of the relationship between exposure and internal dose is critical for risk assessment and public health protection.


Subject(s)
Herbicides , Olfaction Disorders , Animals , Brain , Female , Herbicides/toxicity , Inhalation Exposure/adverse effects , Male , Mice , Mice, Inbred C57BL , Olfaction Disorders/chemically induced , Paraquat/toxicity
8.
Sci Rep ; 10(1): 835, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964898

ABSTRACT

Plastic wastes burdening Earth's water and accumulating on land, releasing toxic leachates, are one of the greatest global threats of our time. Bisphenol-A (BPA), a potent endocrine disrupting compound, is a synthetic ingredient of the polycarbonate plastics and epoxy resins used in food containers, cans, and water bottles. Bisphenol-A's rising concentrations in the environment require a sustainable alternative to current removal practices, which are expensive and/or ecologically unsafe. Switchgrass offers a safe alternative. To investigate its potential for BPA removal, two United States native switchgrass varieties where tested in hydroponic media. Results show minimal hydrolysis and photolysis of BPA over 55 days, confirming its persistence. Both generic and heavy metal switchgrass exhibited statistically significant (p < 0.0001) BPA removal (40% and 46%, respectively) over approximately 3 months, underscoring switchgrass's effectiveness for BPA removal. Significantly higher (p < 0.005) BPA accumulation in roots than shoots and nonsignificant variances in biomass, chlorophyll (p > 0.19), and peroxidase between BPA-treated and untreated plants indicates substantial BPA tolerance in both varieties. Kinetic parameters of BPA removal and translocation factors were also determined, which will inform the design of BPA removal phytotechnologies for a variety of soil conditions, including landfills where BPA accumulation is greatest.


Subject(s)
Benzhydryl Compounds/metabolism , Biodegradation, Environmental , Endocrine Disruptors/metabolism , Environmental Pollution/prevention & control , Panicum/metabolism , Phenols/metabolism , Waste Management/methods , Biomass , Chlorophyll/metabolism , Medical Waste Disposal , Panicum/classification , Peroxidase/metabolism , Plant Roots/metabolism , United States , Water
9.
Part Fibre Toxicol ; 16(1): 1, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30612575

ABSTRACT

BACKGROUND: Recent epidemiological studies indicate early-life exposure to pollution particulate is associated with adverse neurodevelopmental outcomes. The need is arising to evaluate the risks conferred by individual components and sources of air pollution to provide a framework for the regulation of the most relevant components for public health protection. Previous studies in rodent models have shown diesel particulate matter has neurotoxic potential and could be a health concern for neurodevelopment. The present study shows an evaluation of pathological and protracted behavioral alterations following neonatal exposure to aerosolized diesel exhaust particles (NIST SRM 1650b). The particular behavioral focus was on temporal control learning, a broad and fundamental cognitive domain in which reward delivery is contingent on a fixed interval schedule. For this purpose, C57BL/6 J mice were exposed to aerosolized NIST SRM 1650b, a well-characterized diesel particulate material, from postnatal days 4-7 and 10-13, for four hours per day. Pathological features, including glial fibrillary-acidic protein, myelin basic protein expression in the corpus callosum, and ventriculomegaly, as well as learning alterations were measured to determine the extent to which NIST SRM 1650b would induce developmental neurotoxicity. RESULTS: Twenty-four hours following exposure significant increases in glial-fibrillary acidic protein (GFAP) in the corpus callosum and cortex of exposed male mice were present. Additionally, the body weights of juvenile and early adult diesel particle exposed males were lower than controls, although the difference was not statistically significant. No treatment-related differences in males or females on overall locomotor activity or temporal learning during adulthood were observed in response to diesel particulate exposure. CONCLUSION: While some sex and regional-specific pathological alterations in GFAP immunoreactivity suggestive of an inflammatory reaction to SRM 1650b were observed, the lack of protracted behavioral and pathological deficits suggests further clarity is needed on the developmental effects of diesel emissions prior to enacting regulatory guidelines.


Subject(s)
Air Pollutants/toxicity , Behavior, Animal/drug effects , Brain/drug effects , Neurotoxicity Syndromes/etiology , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Animals , Animals, Newborn , Brain/growth & development , Brain/metabolism , Conditioning, Operant/drug effects , Female , Glial Fibrillary Acidic Protein/metabolism , Inhalation Exposure , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Myelin Basic Protein/metabolism , Neurotoxicity Syndromes/metabolism , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...