Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(21): 5090-102, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17880056

ABSTRACT

A new series of MEK1 inhibitors, the 4-anilino-5-carboxamido-2-pyridones, were designed and synthesized using a combination of medicinal chemistry, computational chemistry, and structural elucidation. The effect of variation in the carboxamide side chain, substitution on the pyridone nitrogen, and replacement of the 4'-iodide were all investigated. This study afforded several compounds which were either equipotent or more potent than the clinical candidate CI-1040 (1) in an isolated enzyme assay, as well as murine colon carcinoma (C26) cells, as measured by suppression of phosphorylated ERK substrate. Most notably, pyridone 27 was found to be more potent than 1 in vitro and produced a 100% response rate at a lower dose than 1, when tested for in vivo efficacy in animals bearing C26 tumors.


Subject(s)
Amides/chemical synthesis , Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Pyridones/chemical synthesis , Amides/chemistry , Amides/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 2/chemistry , Male , Mice , Models, Molecular , Neoplasm Transplantation , Phosphorylation , Pyridones/chemistry , Pyridones/pharmacology , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem ; 15(1): 495-510, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17035024

ABSTRACT

A series of 7-N-acyllavendamycins with zero, one or two substituents at the C-2', C-3', and C-11' were synthesized through short and efficient methods. Pictet-Spengler condensation of 7-N-acylamino-2-formylquinoline-5,8-diones with tryptamine or tryptophans produced the desired lavendamycins. Screening data on a panel of three ras oncogene-transformed cell lines and the non-transformed parent cell line showed that a significant number of these analogues are potent antitumor agents and appear to be particularly active against K-ras transformed cells. Compared with the corresponding quinolinediones, these novel lavendamycins are much more inhibitory toward the transformed cells indicating that the beta-carboline moiety of the lavendamycin analogues plays an important role in its potency and selective toxicity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Quinolines/chemical synthesis , Quinolines/pharmacology , Streptonigrin/analogs & derivatives , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Mice , Mice, Inbred C57BL , Mice, Nude , Molecular Structure , Quinolines/chemistry , Rats , Stereoisomerism , Streptonigrin/administration & dosage , Streptonigrin/chemical synthesis , Streptonigrin/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 2(4): 401-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12700284

ABSTRACT

CI-994 or N-acetyldinaline [4-(acetylamino)-N-(2-amino-phenyl) benzamide] is an antitumor cytostatic agent currently undergoing clinical trial. Although several changes in cellular metabolism induced by the drug have been characterized, the primary molecular mechanism of its antitumor activity has been previously unknown. Here, we show that CI-994 is a histone deacetylase (HDAC) inhibitor that causes histone hyperacetylation in living cells. In assays of isolated enzymes, CI-994 inhibited HDAC-1 and HDAC-2 in a concentration-dependent fashion but had no effect on the activity of the prototypical histone acetyltransferase GCN5. Acetylated histone H3-specific Western blots were used to monitor histone acetylation in HCT-8 colon carcinoma cells treated with CI-994 in vitro. CI-994 induced hyperacetylation of H3 in a time- and dose-dependent fashion. H3 hyperacetylation was detectable as early as 30 min after the addition of CI-994 to cells. These data demonstrate that inhibition of HDAC is an early event in cells treated with CI-994 and suggest that this inhibition is mechanistically related to the antitumor activity of this compound.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Histones/chemistry , Phenylenediamines/pharmacology , Acetylation , Benzamides , Blotting, Western , Cell Line, Tumor , Cell Nucleus/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Histones/metabolism , Humans , Inhibitory Concentration 50 , Models, Chemical , Precipitin Tests , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...