Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pain Res ; 17: 1815-1827, 2024.
Article in English | MEDLINE | ID: mdl-38799276

ABSTRACT

Background: Pain management physicians are increasingly focused on limiting prescription opioid abuse, yet existing tools for monitoring adherence have limited accuracy. Medication event monitoring system (MEMS) is an emerging technology for tracking medication usage in real-time but has not been tested in chronic pain patients on long-term opioid regimens. Objective: We conducted a pilot clinical trial to investigate the utility of MEMS for monitoring opioid adherence and compared to traditional methods including self-report diaries, urine drug screen (UDS), and physicians' opinions. Methods: Opioid-maintained chronic pain patients were recruited from a pain management clinic. Participants (n=28) were randomly assigned to either receive MEMS bottles containing their opioid medication for a 90-day period or to continue using standard medication bottles. MEMS bottles were configured to record and timestamp all bottle openings and the number of pills that were removed from the bottle (via measurement of weight change). Results: Participants who received MEMS demonstrated highly heterogenous dosing patterns, with a substantial number of patients rapidly removing excessive amounts of medication and/or "stockpiling" medication. By comparison, physicians rated all participants as either "totally compliant" or "mostly compliant". UDS results did not reveal any illicit drug use, but 25% of participants (n=7) tested negative for their prescribed opioid metabolite. MEMS data did not correlate with physician-rated adherence (P=0.24) and UDS results (P=0.77). MEMS data consistently revealed greater non-adherence than self-report data (P<0.001). Conclusion: These results highlight the limits in our understanding of naturalistic patterns of daily opioid use in chronic pain patients as well as support the use of MEMS for detecting potential misuse as compared to routine adherence monitoring methods. Future research directions include the need to determine how MEMS could be used to improve patient outcomes, minimize harm, and aid in clinical decision-making. Trial Registration: This study was preregistered on ClinicalTrials.gov (NCT03752411).

2.
Front Pharmacol ; 14: 1239159, 2023.
Article in English | MEDLINE | ID: mdl-37886127

ABSTRACT

Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.

3.
Front Pharmacol ; 14: 1268366, 2023.
Article in English | MEDLINE | ID: mdl-37795028

ABSTRACT

The drug overdose crisis has spawned serious health consequences, including the increased incidence of substance use disorders (SUDs), conditions manifested by escalating medical and psychological impairments. While medication management is a key adjunct in SUD treatment, this crisis has crystallized the need to develop additional therapeutics to facilitate extended recovery from SUDs. The "hunger hormone" ghrelin acts by binding to the growth hormone secretagogue receptor 1α (GHS1αR) to control homeostatic and hedonic aspects of food intake and has been implicated in the mechanisms underlying SUDs. Preclinical studies indicate that GHS1αR antagonists and inverse agonists suppress reward-related signaling associated with cocaine and opioids. In the present study, we found that the GHS1αR antagonist JMV2959 was efficacious to suppress both cue-reinforced cocaine and oxycodone drug-seeking, but not cocaine or oxycodone self-administration in male Sprague-Dawley rats. These data suggest a role of the ghrelin-GHS1αR axis in mediating overlapping reward-related aspects of cocaine and oxycodone and premises the possibility that a GHS1αR antagonist may be a valuable therapeutic strategy for relapse vulnerability in SUDs.

4.
J Med Chem ; 66(14): 9992-10009, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37462530

ABSTRACT

The serotonin 5-HT2A receptor (5-HT2AR) and 5-HT2CR localize to the brain and share overlapping signal transduction facets that contribute to their roles in cognition, mood, learning, and memory. Achieving selective targeting of these receptors is challenged by the similarity in their 5-HT orthosteric binding pockets. A fragment-based discovery approach was employed to design and synthesize novel oleamide analogues as selective 5-HT2CR or dual 5-HT2CR/5-HT2AR positive allosteric modulators (PAMs). Compound 13 (JPC0323) exhibited on-target properties, acceptable plasma exposure and brain penetration, as well as negligible displacement to orthosteric sites of ∼50 GPCRs and transporters. Furthermore, compound 13 suppressed novelty-induced locomotor activity in a 5-HT2CR-dependent manner, suggesting 5-HT2CR PAM, but not 5-HT2AR, activity at the level of the whole organism at the employed doses of 13. We discovered new selective 5-HT2CR PAMs and first-in-class 5-HT2CR/5-HT2AR dual PAMs that broaden the pharmacological toolbox to explore the biology of these vital receptors.


Subject(s)
Receptor, Serotonin, 5-HT2A , Serotonin , Serotonin/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Brain/metabolism
5.
Front Pharmacol ; 13: 893828, 2022.
Article in English | MEDLINE | ID: mdl-35833018

ABSTRACT

Physicians are challenged in treating pain patients due to the lack of quantifiable, objective methods of measuring pain in the clinic; pain sensation is multifaceted and subjective to each individual. There is a critical need for point-of-care quantification of accessible biomarkers to provide objective analyses beyond the subjective pain scales currently employed in clinical care settings. In the present study, we employed an animal model to test the hypothesis that circulating regulators of the inflammatory response directly associate with an objective behavioral response to inflammatory pain. Upon induction of localized paw inflammation, we measured the systemic protein expression of cytokines, and activity levels of matrix metalloproteinases (MMPs) that are known to participate in the inflammatory response at the site of injury and investigated their relationship to the behavioral response across a 24 h period. Intraplantar injection with 1% λ-carrageenan induced a significant increase in paw thickness across this timespan with maximal effects observed at the 8 h timepoint when locomotor activity was also impaired. Expression of the chemokines C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand 2 (CCL2) positively correlated with paw inflammation and negatively correlated with locomotor activity at 8 h. The ratio of MMP9 to MMP2 activity negatively correlated with paw inflammation at the 8 h timepoint. We postulate that the CXCL1 and CCL2 as well as the ratio of MMP9 to MMP2 activity may serve as predictive biomarkers for the timecourse of inflammation-associated locomotor impairment. These data define opportunities for the future development of a point-of-care device to objectively quantify biomarkers for inflammatory pain states.

6.
Front Pharmacol ; 13: 1022863, 2022.
Article in English | MEDLINE | ID: mdl-36588704

ABSTRACT

Drug overdose deaths involving cocaine have skyrocketed, an outcome attributable in part to the lack of FDA-approved medications for the treatment of cocaine use disorder (CUD), highlighting the need to identify new pharmacotherapeutic targets. Vulnerability to cocaine-associated environmental contexts and stimuli serves as a risk factor for relapse in CUD recovery, with individual differences evident in the motivational aspects of these cues. The medial prefrontal cortex (mPFC) provides top-down control of striatal circuitry to regulate the incentive-motivational properties of cocaine-associated stimuli. Clinical and preclinical studies have identified genetic variations that impact the degree of executive restraint over drug-motivated behaviors, and we designed the present study to employ next-generation sequencing to identify specific genes associated with heightened cue-evoked cocaine-seeking in the mPFC of male, outbred rats. Rats were trained to stably self-administer cocaine, and baseline cue-reinforced cocaine-seeking was established. Rats were phenotyped as either high cue (HC) or low cue (LC) responders based upon lever pressing for previously associated cocaine cues and allowed 10 days of abstinence in their home cages prior to mPFC collection for RNA-sequencing. The expression of 309 genes in the mPFC was significantly different in HC vs. LC rats. Functional gene enrichment analyses identified ten biological processes that were overrepresented in the mPFC of HC vs. LC rats. The present study identifies distinctions in mPFC mRNA transcripts that characterizes individual differences in relapse-like behavior and provides prioritized candidates for future pharmacotherapeutics aimed to help maintain abstinence in CUD. In particular the Htr2c gene, which encodes the serotonin 5-HT2C receptor (5-HT2CR), is expressed to a lower extent in HC rats, relative to LC rats. These findings build on a plethora of previous studies that also point to the 5-HT2CR as an attractive target for the treatment of CUD.

7.
Neuroscience ; 463: 272-287, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33811940

ABSTRACT

Opioid use by women during pregnancy has risen dramatically since 2004, accompanied by a striking increase in the prevalence of neonatal opioid withdrawal syndrome (NOWS) and other long-term neurological deficits. However, the mechanisms underlying the impact of prenatal opioid exposure on fetal neurodevelopment are largely unknown. To translate from the clinical presentation, we developed a novel mouse model to study the neurodevelopmental consequences of maternal opioid use and management. Female mice were treated with oxycodone (OXY) before mating to mimic opioid use disorder (OUD) in humans. Following pregnancy confirmation, dams were switched to buprenorphine (BUP) via oral administration, simulating medication management of OUD (MOUD) in pregnant women. Here, we document critical changes in fetal brain development including reduced cortical thickness, altered corticogenesis, and ventriculomegaly in embryos from dams that were treated with opioids before and throughout pregnancy. Maternal care giving behavior was slightly altered without affecting gross growth of offspring. However, adolescent offspring exposed to maternal opioid use during pregnancy exhibited hyperactivity in late adolescence. Remarkably, we also show increased generation of dopaminergic neurons within the ventral tegmental area (VTA) of mice exposed to prenatal opioids. These data provide critical evidence of teratogenic effects of opioid use during pregnancy and suggest a causal relationship between maternal opioid use and neurodevelopmental/behavioral anomalies in adolescence.


Subject(s)
Buprenorphine , Neonatal Abstinence Syndrome , Opioid-Related Disorders , Prenatal Exposure Delayed Effects , Adolescent , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/toxicity , Animals , Buprenorphine/therapeutic use , Female , Humans , Infant, Newborn , Mice , Neonatal Abstinence Syndrome/drug therapy , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/drug therapy
8.
Neuroscience ; 435: 161-173, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32240784

ABSTRACT

High impulsivity characterizes a myriad of neuropsychiatric diseases, and identifying targets for neuropharmacological intervention to reduce impulsivity could reveal transdiagnostic treatment strategies. Motor impulsivity (impulsive action) reflects in part the failure of "top-down" executive control by the medial prefrontal cortex (mPFC). The present study profiled the complete set of mRNA molecules expressed from genes (transcriptome) in the mPFC of male, outbred rats stably expressing high (HI) or low (LI) motor impulsivity based upon premature responses in the 1-choice serial reaction time (1-CSRT) task. RNA-sequencing identified expression of 18 genes that was higher in the mPFC of HI vs. LI rats. Functional gene enrichment revealed that biological processes related to calcium homeostasis and G protein-coupled receptor (GPCR) signaling pathways, particularly glutamatergic, were overrepresented in the mPFC of HI vs. LI rats. Transcription factor enrichment identified mothers against decapentaplegic homolog 4 (SMAD4) and RE1 silencing transcription factor (REST) as overrepresented in the mPFC of HI rats relative to LI rats, while in silico analysis predicted a conserved SMAD binding site within the voltage-gated calcium channel subunit alpha1 E (CACNA1E) promoter region. qRT-PCR analyses confirmed that mRNA expression of CACNA1E, as well as expression of leucyl and cystinyl aminopeptidase (LNPEP), were higher in the mPFC of HI vs. LI rats. These outcomes establish a transcriptomic landscape in the mPFC that is related to individual differences in motor impulsivity and propose novel gene targets for future impulsivity research.


Subject(s)
Choice Behavior , Impulsive Behavior , Animals , Executive Function , Male , Prefrontal Cortex , Rats , Rats, Sprague-Dawley
9.
Neuropharmacology ; 168: 108009, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32145488

ABSTRACT

Cocaine use disorder (CUD) is a major public health challenge for which there are no pharmacotherapeutics approved by the United States Food and Drug Administration (FDA). The propensity to relapse in CUD involves several vulnerability factors including sensitivity to cues associated with cocaine-taking. Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission, particularly through the 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR), is mechanistically linked to cocaine-seeking in preclinical models. In the present experiments, we employed self-administration assays in male rats to investigate whether acute and/or repeated administration of the FDA-approved selective 5-HT2AR antagonist/inverse agonist pimavanserin, selective 5-HT2CR agonist lorcaserin or their combination would alter cocaine intake and/or cocaine-seeking behavior. We found that acute administration of lorcaserin, but not pimavanserin, attenuated cocaine intake while pimavanserin plus lorcaserin did not impact cocaine self-administration. In contrast, 10-days of repeated administration of pimavanserin, lorcaserin, or pimavanserin plus lorcaserin during forced abstinence from cocaine self-administration, blunted cocaine-seeking, similar to the acute administration of each ligand. Taken together, these data reveal the efficacy of repeated treatment with pimavanserin plus lorcaserin to attenuate factors important to relapse-like behaviors in rodent models of CUD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Subject(s)
Benzazepines/administration & dosage , Cocaine-Related Disorders/drug therapy , Cocaine-Related Disorders/psychology , Cocaine/administration & dosage , Piperidines/administration & dosage , Urea/analogs & derivatives , Animals , Benzazepines/pharmacokinetics , Cocaine/pharmacokinetics , Cocaine-Related Disorders/metabolism , Dose-Response Relationship, Drug , Drug Therapy, Combination , Male , Piperidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Recurrence , Self Administration , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Serotonin 5-HT2 Receptor Antagonists/pharmacokinetics , Urea/administration & dosage , Urea/pharmacokinetics
10.
Front Pharmacol ; 9: 1024, 2018.
Article in English | MEDLINE | ID: mdl-30271344

ABSTRACT

Attention impairment is a common feature of Major Depressive Disorder (MDD), and MDD-associated cognitive dysfunction may play an important role in determining functional status among this patient population. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in MDD patients, and may indirectly increase glutamate neurotransmission in brain regions classically associated with attention function. Previous non-clinical research suggests that vortioxetine has limited effects on attention. This laboratory previously found that vortioxetine did not improve attention function in animals impaired by acute scopolamine administration, using the visual signal detection task (VSDT). However, vortioxetine has limited effects on acetylcholinergic neurotransmission, and thus it is possible that attention impaired by other mechanisms would be attenuated by vortioxetine. This study sought to investigate whether acute vortioxetine administration can attenuate VSDT impairments and hyperlocomotion induced by the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. We found that acute vortioxetine administration had no effect on VSDT performance on its own, but potentiated MK-801-induced VSDT impairments. Furthermore, vortioxetine had no effect on locomotor activity on its own, and did not alter MK-801-induced hyperlocomotion. We further investigated whether vortioxetine's effect on MK-801 could be driven by a kinetic interaction, but found that plasma and brain exposure for vortioxetine and MK-801 were similar whether administered alone or in combination. Thus, it appears that vortioxetine selectively potentiates MK-801-induced impairments in attention without altering its effects on locomotion, and further that this interaction must be pharmacodynamic in nature. A theoretical mechanism for this interaction is discussed.

11.
Behav Pharmacol ; 26(5): 495-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26154438

ABSTRACT

The noncompetitive N-methyl-D-aspartate receptor antagonist ketamine produces consistent, rapid, and sustained antidepressant effects in patients suffering from treatment-resistant depression. However, ketamine-induced cognitive impairments remain a major concern. The present study sought to extend the preclinical evaluation of ketamine-induced cognitive impairments by evaluating the dose (1.0-18.0 mg/kg) and time-course (10 min-24 h) of effects of ketamine on sustained attention using a visual signal detection procedure in rats. Overall, ketamine (10.0-18.0 mg/kg) dose-dependently decreased percent hit and correct rejection accuracy. Additionally, these same doses of ketamine increased response latency and trial omissions. In the time-course study, treatment with 18.0 mg/kg ketamine produced the greatest decrease in visual signal detection performance at 10 min, when ketamine decreased percent hit and correct rejection accuracy as well as increased response latency and trial omissions, but returned to saline baseline controls by 100 min. In conclusion, acute ketamine inhibited sustained attention in rats performing a visual signal detection task; however, these effects were short in duration, similar to the short duration (<2 h) of psychotomimetic effects reported in low-dose ketamine treatment in depressed patients.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Detection, Psychological/drug effects , Visual Perception/drug effects , Animals , Attention/drug effects , Attention/physiology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Male , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Detection, Psychological/physiology , Time Factors , Visual Perception/physiology
12.
J Pharmacol Exp Ther ; 354(2): 111-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25998048

ABSTRACT

Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states with minimal cannabimimetic effects.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Analgesics/administration & dosage , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoid Receptor Antagonists/administration & dosage , Monoacylglycerol Lipases/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Benzodioxoles/administration & dosage , Brain/drug effects , Brain/enzymology , Drug Therapy, Combination , Hyperalgesia/drug therapy , Hyperalgesia/enzymology , Male , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/metabolism , Piperidines/administration & dosage , Pyridines/administration & dosage , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...