Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
PLoS One ; 8(8): e73868, 2013.
Article in English | MEDLINE | ID: mdl-23967351

ABSTRACT

Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this study indicates that HMBPP is an important elicitor in common for both Plasmodium and gut bacteria in the mosquito.


Subject(s)
Anopheles/immunology , Antioxidants/pharmacology , Organophosphates/immunology , Organophosphates/pharmacology , Animals , Anopheles/genetics , Anopheles/microbiology , Culture Media, Conditioned/pharmacology , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Gastrointestinal Tract/microbiology , Gene Expression Profiling , Host-Pathogen Interactions/immunology , Humans , Hydrogen Peroxide/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction/drug effects , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
J Org Chem ; 75(21): 7416-9, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20925420

ABSTRACT

The first one-pot synthesis of neutral and electron-rich [hydroxy(tosyloxy)iodo]arenes (HTIBs) from iodine and arenes is presented, thereby avoiding the need for expensive iodine(III) precursors. A large set of HTIBs, including a polyfluorinated analogue, can be obtained from the corresponding aryl iodide under the same conditions. The reaction proceeds under mild conditions, without excess reagents, and is fast and high-yielding. Together, the two presented routes give access to a wide range of HTIBs, which are useful reagents in a variety of synthetic transformations.

3.
Angew Chem Int Ed Engl ; 48(48): 9052-70, 2009.
Article in English | MEDLINE | ID: mdl-19876992

ABSTRACT

The recent groundbreaking developments in the application of diaryliodonium salts in cross-coupling reactions has brought this class of previously underdeveloped reagents to the forefront of organic chemistry. With the advent of novel, facile, and efficient synthetic routes to these compounds, many more applications can be foreseen. Herein we provide an overview of the historical and recent advances in the synthesis and applications of diaryliodonium salts.

SELECTION OF CITATIONS
SEARCH DETAIL