Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38391683

ABSTRACT

There is currently a shift in surgical training from traditional methods to simulation-based approaches, recognizing the necessity of more effective and controlled learning environments. This study introduces a completely new 3D-printed modular system for endovascular surgery training (M-SET), developed to allow various difficulty levels. Its design was based on computed tomography angiographies from real patient data with femoro-popliteal lesions. The study aimed to explore the integration of simulation training via a 3D model into the surgical training curriculum and its effect on their performance. Our preliminary study included 12 volunteer trainees randomized 1:1 into the standard simulation (SS) group (3 stepwise difficulty training sessions) and the random simulation (RS) group (random difficulty of the M-SET). A senior surgeon evaluated and timed the final training session. Feedback reports were assessed through the Student Satisfaction and Self-Confidence in Learning Scale. The SS group completed the training sessions in about half time (23.13 ± 9.2 min vs. 44.6 ± 12.8 min). Trainees expressed high satisfaction with the training program supported by the M-SET. Our 3D-printed modular training model meets the current need for new endovascular training approaches, offering a customizable, accessible, and effective simulation-based educational program with the aim of reducing the time required to reach a high level of practical skills.

2.
Pharmaceutics ; 14(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631679

ABSTRACT

High-flow nasal cannula (HFNC) is a non-invasive respiratory support (NRS) modality to treat premature infants with respiratory distress syndrome (RDS). The delivery of nebulized surfactant during NRS would represent a truly non-invasive method of surfactant administration and could reduce NRS failure rates. However, the delivery efficiency of nebulized surfactant during HFNC has not been evaluated in vitro or in animal models of respiratory distress. We, therefore, performed first a benchmark study to compare the surfactant lung dose delivered by commercially available neonatal nasal cannulas (NCs) and HFNC circuits commonly used in neonatal intensive care units. Then, the pulmonary effect of nebulized surfactant delivered via HFNC was investigated in spontaneously breathing rabbits with induced respiratory distress. The benchmark study revealed the surfactant lung dose to be relatively low for both types of NCs tested (Westmed NCs 0.5 ± 0.45%; Fisher & Paykel NCs 1.8 ± 1.9% of a nominal dose of 200 mg/kg of Poractant alfa). The modest lung doses achieved in the benchmark study are compatible with the lack of the effect of nebulized surfactant in vivo (400 mg/kg), where arterial oxygenation and lung mechanics did not improve and were significantly worse than the intratracheal instillation of surfactant. The results from the present study indicate a relatively low lung surfactant dose and negligible effect on pulmonary function in terms of arterial oxygenation and lung mechanics. This negligible effect can, for the greater part, be explained by the high impaction of aerosol particles in the ventilation circuit and upper airways due to the high air flows used during HFNC.

3.
J Vis Exp ; (169)2021 03 03.
Article in English | MEDLINE | ID: mdl-33749675

ABSTRACT

Intratracheal (IT) drug delivery allows the direct delivery of pharmaceutical substances to the lung, maximizing potential pulmonary benefit and minimizing systemic drug exposure. The transcutaneous technique is simple and allows for the IT delivery of substances to the lung of prematurely born rabbits shortly after birth. Newborn pups are anesthetized with inhaled Isoflurane before being placed in a supine position with the neck extended. The larynx is identified and stabilized before transcutaneous placement of a 26-gauge (G) catheter into the trachea. Following catheterization of the trachea, a 30 G blunt needle attached to a Hamilton syringe is introduced into the IT catheter and is used for delivering a precise volume into the trachea during spontaneous respiration. After the IT injection is completed, the needle and catheter are withdrawn, and the pup is allowed to recover from anesthesia. Transcutaneous IT injection delivers a large proportion of the injected substance to the lung, with the majority remaining in the lung 3 hours after the intervention. The injections are well tolerated from the day of birth and can be repeated for multiple consecutive days without influencing survival. This technique can be used to investigate the effect of pharmaceutical agents on lung development and in the prevention of neonatal lung injury in preterm rabbits.


Subject(s)
Drug Delivery Systems , Premature Birth/pathology , Trachea/pathology , Administration, Cutaneous , Anesthesia , Animals , Animals, Newborn , Injections , Rabbits , Tissue Distribution
4.
Pediatr Res ; 90(3): 576-583, 2021 09.
Article in English | MEDLINE | ID: mdl-33452472

ABSTRACT

BACKGROUND: In preterm infants, InSurE (Intubation-Surfactant-Extubation) and LISA (less invasive surfactant administration) techniques allow for exogenous surfactant administration while reducing lung injury associated with mechanical ventilation. We compared the acute pulmonary response and lung deposition of surfactant by LISA and InSurE in surfactant-depleted adult rabbits. METHODS: Twenty-six spontaneously breathing surfactant-depleted adult rabbits (6-7 weeks old) with moderate RDS and managed with nasal continuous positive airway pressure were randomized to 3 groups: (1) 200 mg/kg of surfactant by InSurE; (2) 200 mg/kg of surfactant by LISA; (3) no surfactant treatment (Control). Gas exchange and lung mechanics were monitored for 180 min. After that, surfactant lung deposition and distribution were evaluated monitoring disaturated-phosphatidylcholine (DSPC) and surfactant protein C (SP-C), respectively. RESULTS: No signs of recovery were found in the untreated animals. After InSurE, oxygenation improved more rapidly compared to LISA. However, at 180' LISA and InSurE showed comparable outcomes in terms of gas exchange, ventilation parameters, and lung mechanics. Neither DSPC in the alveolar pool nor SP-C signal distributions in a frontal lung section were significantly different between InSurE and LISA groups. CONCLUSIONS: In an acute setting, LISA demonstrated efficacy and surfactant lung delivery similar to that of InSurE in surfactant-depleted adult rabbits. IMPACT: Although LISA technique is gaining popularity, there are still several questions to address. This is the first study comparing LISA and InSurE in terms of gas exchange, ventilation parameters, and lung mechanics as well as surfactant deposition and distribution. In our animal study, three hours post-treatment, LISA method seems to be as effective as InSurE and showed similar surfactant lung delivery. Our findings provide some clarifications on a fair comparison between LISA and InSurE techniques, particularly in terms of surfactant delivery. They should reassure some of the concerns raised by the clinical community on LISA adoption in neonatal units.


Subject(s)
Pulmonary Surfactants/administration & dosage , Respiratory Distress Syndrome, Newborn/drug therapy , Animals , Continuous Positive Airway Pressure , Disease Models, Animal , Humans , Rabbits , Respiration, Artificial
5.
Respir Res ; 20(1): 158, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31319861

ABSTRACT

BACKGROUND: Respiratory Distress Syndrome (RDS) is a prematurity-related breathing disorder caused by a quantitative deficiency of pulmonary surfactant. Surfactant replacement therapy is effective for RDS newborns, although treatment failure has been reported. The aim of this study is to trace exogenous surfactant by 13C variation and estimate the amount reaching the lungs at different doses of the drug. METHODS: Forty-four surfactant-depleted rabbits were obtained by serial bronchoalveolar lavages (BALs), that were merged into a pool (BAL pool) for each animal. Rabbits were in nasal continuous positive airway pressure and treated with 0, 25, 50, 100 or 200 mg/kg of poractant alfa by InSurE. After 90 min, rabbits were depleted again and a new pool (BAL end experiment) was collected. Disaturated-phosphatidylcholine (DSPC) was measured by gas chromatography. DSPC-Palmitic acid (PA) 13C/12C was analyzed by isotope ratio mass spectrometry. One-way non-parametric ANOVA and post-hoc Dunn's multiple comparison were used to assess differences among experimental groups. RESULTS: Based on DSPC-PA 13C/12C in BAL pool and BAL end experiment, the estimated amount of exogenous surfactant ranged from 61 to 87% in dose-dependent way (p < 0.0001) in animals treated with 25 up to 200 mg/kg. Surfactant administration stimulated endogenous surfactant secretion. The percentage of drug recovered from lungs did not depend on the administered dose and accounted for 31% [24-40] of dose. CONCLUSIONS: We reported a risk-free method to trace exogenous surfactant in vivo. It could be a valuable tool for assessing, alongside the physiological response, the delivery efficiency of surfactant administration techniques.


Subject(s)
Biological Products/metabolism , Carbon Isotopes/metabolism , Lung/metabolism , Phospholipids/metabolism , Pulmonary Surfactants/metabolism , Animals , Biological Products/administration & dosage , Carbon Isotopes/administration & dosage , Dose-Response Relationship, Drug , Lung/drug effects , Male , Phospholipids/administration & dosage , Pulmonary Surfactants/administration & dosage , Rabbits , Surface-Active Agents/administration & dosage , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...