Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 436(2): 168381, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38081382

ABSTRACT

Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as occurring by the ATPase motors mechanically pulling the DNA duplex across a wedge domain in the helicase, biochemical data show that processive DNA unwinding by E. coli RecBCD helicase can occur in the absence of ssDNA translocation by the canonical RecB and RecD motors. Here we show that DNA unwinding is not a simple consequence of ssDNA translocation by the motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecBΔNucCD) unwinds dsDNA at significantly slower rates than RecBCD, while the ssDNA translocation rate is unaffected. This effect is primarily due to the absence of the nuclease domain since a nuclease-dead mutant (RecBD1080ACD), which retains the nuclease domain, showed no change in ssDNA translocation or dsDNA unwinding rates relative to RecBCD on short DNA substrates (≤60 base pairs). Hence, ssDNA translocation is not rate-limiting for DNA unwinding. RecBΔNucCD also initiates unwinding much slower than RecBCD from a blunt-ended DNA. RecBΔNucCD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecBD1080ACD unwinding are intermediate between RecBCD and RecBΔNucCD. Surprisingly, significant pauses in DNA unwinding occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, possibly allosterically and that RecBΔNucCD may mimic a post-chi state of RecBCD.


Subject(s)
DNA Helicases , DNA, Single-Stranded , Escherichia coli Proteins , Escherichia coli , Exodeoxyribonuclease V , DNA Helicases/chemistry , DNA Helicases/genetics , DNA, Single-Stranded/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Exodeoxyribonuclease V/chemistry , Exodeoxyribonuclease V/genetics , Protein Domains
2.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37905078

ABSTRACT

Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as a consequence of mechanically pulling the DNA duplex across a wedge domain in the helicase by the single stranded (ss)DNA translocase activity of the ATPase motors, biochemical data indicate that processive DNA unwinding by the E. coli RecBCD helicase can occur in the absence of ssDNA translocation of the canonical RecB and RecD motors. Here, we present evidence that dsDNA unwinding is not a simple consequence of ssDNA translocation by the RecBCD motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecB ΔNuc CD) unwinds dsDNA at significantly slower rates than RecBCD, while the rate of ssDNA translocation is unaffected. This effect is primarily due to the absence of the nuclease domain and not the absence of the nuclease activity, since a nuclease-dead mutant (RecB D1080A CD), which retains the nuclease domain, showed no significant change in rates of ssDNA translocation or dsDNA unwinding relative to RecBCD on short DNA substrates (≤ 60 base pairs). This indicates that ssDNA translocation is not rate-limiting for DNA unwinding. RecB ΔNuc CD also initiates unwinding much slower than RecBCD from a blunt-ended DNA, although it binds with higher affinity than RecBCD. RecB ΔNuc CD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecB D1080A CD unwinding are intermediate between RecBCD and RecB ΔNuc CD. Surprisingly, significant pauses occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, rather than DNA translocation, possibly allosterically. Since the rate of DNA unwinding by RecBCD also slows after it recognizes a chi sequence, RecB ΔNuc CD may mimic a post- chi state of RecBCD.

3.
Proc Natl Acad Sci U S A ; 120(15): e2216777120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37011199

ABSTRACT

Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Protein Binding/genetics , Replication Protein A/metabolism , DNA, Single-Stranded/metabolism , DNA/metabolism , Adenosine Triphosphate/metabolism , DNA Helicases/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL