Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1259004, 2023.
Article in English | MEDLINE | ID: mdl-37849760

ABSTRACT

Staphylococcus aureus is a common cause of hospital-acquired pneumonia associated with high mortality. Adequate clinical treatment is impeded by increasing occurrence of antibiotic resistances. Understanding the underlying mechanisms of its virulence during infections is a prerequisite to finding alternative treatments. Here, we demonstrated that an increased nuclease activity of a S. aureus isolate from a person with cystic fibrosis confers a growth advantage in a model of acute lung infection compared to the isogenic strain with low nuclease activity. Comparing these CF-isolates with a common MRSA-USA300 strain with similarly high nuclease activity but significantly elevated levels of Staphylococcal Protein A (SpA) revealed that infection with USA300 resulted in a significantly increased bacterial burden in a model of murine lung infection. Replenishment with the cell wall-bound SpA of S. aureus, which can also be secreted into the environment and binds to tumor necrosis factor receptor -1 (TNFR-1) to the CF-isolates abrogated these differences. In vitro experiments confirmed significant differences in spa-expression between USA300 compared to CF-isolates, thereby influencing TNFR-1 shedding, L-selectin shedding, and production of reactive oxygen species through activation of ADAM17.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pneumonia , Staphylococcal Infections , Humans , Mice , Animals , Staphylococcus aureus , Staphylococcal Protein A , Virulence , Disease Models, Animal , Staphylococcal Infections/microbiology , Lung
2.
Small ; 19(14): e2205185, 2023 04.
Article in English | MEDLINE | ID: mdl-36635040

ABSTRACT

Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).


Subject(s)
Nitric Oxide , Thrombosis , Humans , Nitric Oxide/metabolism , Nanogels , Cyclic GMP/metabolism , Blood Platelets/metabolism , Endothelium/metabolism
3.
Cells ; 11(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36497202

ABSTRACT

Acute respiratory distress syndrome (ARDS) due to pulmonary infections is associated with high morbidity and mortality. Upon inflammation, the alarmin S100A8/A9 is released and stimulates neutrophil recruitment mainly via binding to Toll-like receptor 4 (TLR4). TLR4 is also expressed on platelets, which modulate the immune response through direct interaction with leukocytes. In a murine model of Klebsiella pneumoniae-induced pulmonary inflammation, global S100A9 deficiency resulted in diminished neutrophil recruitment into the lung alveoli and neutrophil accumulation in the intravascular space, indicating an impaired neutrophil migration. A lack of TLR4 on platelets resulted in reduced neutrophil counts in the whole lung, emphasising the impact of TLR4-mediated platelet activity on neutrophil behaviour. Flow cytometry-based analysis indicated elevated numbers of platelet-neutrophil complexes in the blood of S100A9-/- mice. Intravital microscopy of the murine cremaster muscle confirmed these findings and further indicated a significant increase in neutrophil-platelet complex formation in S100A9-/- mice, which was reversed by administration of the S100A8/A9 tetramer. An in vitro bilayer assay simulated the murine alveolar capillary barrier during inflammation and validated significant differences in transmigration behaviour between wild-type and S100A9-/- neutrophils. This study demonstrates the role of S100A8/A9 during platelet-neutrophil interactions and neutrophil recruitment during pulmonary inflammation.


Subject(s)
Calgranulin A , Calgranulin B , Neutrophils , Pneumonia, Bacterial , Animals , Mice , Alarmins/metabolism , Calgranulin A/metabolism , Calgranulin B/metabolism , Inflammation/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Mice, Knockout , Pneumonia, Bacterial/metabolism
4.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36107633

ABSTRACT

Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.


Subject(s)
Acute Kidney Injury , Glutamine , Humans , Mice , Animals , Glutamine/pharmacology , Glutamine/metabolism , Proteomics , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Apoptosis/physiology , Oxidative Stress , Epithelial Cells/metabolism
5.
JCI Insight ; 7(14)2022 07 22.
Article in English | MEDLINE | ID: mdl-35727636

ABSTRACT

Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates with kidney protection. Here, we show that RIPC reduces renal ischemia-reperfusion injury and improves kidney function in mice. Mechanistically, RIPC increases HMGB1 levels in the plasma and urine, and HMGB1 binds to TLR4 on renal tubular epithelial cells, inducing transcriptomic modulation of renal tubular epithelial cells and providing renal protection, whereas TLR4 activation on nonrenal cells was shown to contribute to renal injury. This protection is mediated by activation of induction of AMPKα and NF-κB; this induction contributes to the upregulation of Sema5b, which triggers a transient, protective G1 cell cycle arrest. In cardiac surgery patients at high risk for postoperative acute kidney injury, increased HMGB1 and Sema5b levels after RIPC were associated with renal protection after surgery. The results may help to develop future clinical treatment options for acute kidney injury.


Subject(s)
Acute Kidney Injury , HMGB1 Protein , Ischemic Preconditioning , NF-kappa B p50 Subunit/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Animals , Cell Cycle Checkpoints , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Ischemic Preconditioning/methods , Kidney/metabolism , Mice , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism
6.
Front Immunol ; 13: 843782, 2022.
Article in English | MEDLINE | ID: mdl-35529856

ABSTRACT

Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Sepsis , Acute Kidney Injury/pathology , Animals , Creatinine , Female , Humans , Ischemia/pathology , Kidney/pathology , Male , Mice , Neutrophil Infiltration , Reperfusion/adverse effects , Reperfusion Injury/complications , Reperfusion Injury/pathology , Sepsis/pathology
7.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34014253

ABSTRACT

Beyond hemostasis, platelets actively participate in immune cell recruitment and host defense, yet their potential in the resolution of inflammatory processes remains unknown. Here, we demonstrate that platelets are recruited into the lung together with neutrophils during the onset of inflammation and alongside regulatory T (T reg) cells during the resolution phase. This partnering dichotomy is regulated by differential adhesion molecule expression during resolution. Mechanistically, intravascular platelets form aggregates with T reg cells, a prerequisite for their recruitment into the lung. This interaction relies on platelet activation by sCD40L and platelet P-selectin binding to PSGL-1 on T reg cells. Physical platelet-T reg cell interactions are necessary to modulate the transcriptome and instruct T reg cells to release the anti-inflammatory mediators IL-10 and TGFß. Notably, the presence of platelet-T reg cell aggregates in the lung was also required for macrophage transcriptional reprogramming, polarization toward an anti-inflammatory phenotype, and effective resolution of pulmonary inflammation. Thus, platelets partner with successive immune cell subsets to orchestrate both the initiation and resolution of inflammation.


Subject(s)
Blood Platelets/immunology , Lung/immunology , Macrophages/immunology , Pneumonia/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Adhesion/immunology , Hemostasis/immunology , Male , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Transcription, Genetic/immunology
8.
Blood ; 136(19): 2200-2205, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32730588

ABSTRACT

Neutrophil adhesion and extravasation into tissue at sites of injury or infection depend on binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) to ICAM-1 expressed on activated endothelial cells. The activation-dependent conformational change of LFA-1 to the high-affinity conformation (H+) requires kindlin-3 binding to the ß2-integrin cytoplasmic domain. Here we show that genetic deletion of the known kindlin interactor integrin-linked kinase (ILK) impaired neutrophil adhesion and extravasation in the cremaster muscle and in a clinically relevant model of renal ischemia reperfusion injury. Using in vitro microfluidic adhesion chambers and conformation-specific antibodies, we show that knockdown of ILK in HL-60 cells reduced the conformational change of ß2-integrins to the H+ conformation. Mechanistically, we found that ILK was required for protein kinase C (PKC) membrane targeting and chemokine-induced upregulation of its kinase activity. Moreover, PKC-α deficiency also resulted in impaired leukocyte adhesion in bone marrow chimeric mice. Mass spectrometric and western blot analyses revealed stimulation- and ILK-dependent phosphorylation of kindlin-3 upon activation. In summary, our data indicate an important role of ILK in kindlin-3-dependent conformational activation of LFA-1.


Subject(s)
Acute Kidney Injury/metabolism , CD18 Antigens/metabolism , Chemokines/pharmacology , Lymphocyte Function-Associated Antigen-1/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Animals , CD18 Antigens/chemistry , Cell Adhesion , Disease Models, Animal , HL-60 Cells , Humans , Leukocytes/drug effects , Leukocytes/immunology , Leukocytes/metabolism , Lymphocyte Function-Associated Antigen-1/chemistry , Mice , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Phosphorylation , Reperfusion Injury/complications , Signal Transduction
9.
Nat Neurosci ; 22(11): 1793-1805, 2019 11.
Article in English | MEDLINE | ID: mdl-31591561

ABSTRACT

Neuromuscular junction (NMJ) disruption is an early pathogenic event in amyotrophic lateral sclerosis (ALS). Yet, direct links between NMJ pathways and ALS-associated genes such as FUS, whose heterozygous mutations cause aggressive forms of ALS, remain elusive. In a knock-in Fus-ALS mouse model, we identified postsynaptic NMJ defects in newborn homozygous mutants that were attributable to mutant FUS toxicity in skeletal muscle. Adult heterozygous knock-in mice displayed smaller neuromuscular endplates that denervated before motor neuron loss, which is consistent with 'dying-back' neuronopathy. FUS was enriched in subsynaptic myonuclei, and this innervation-dependent enrichment was distorted in FUS-ALS. Mechanistically, FUS collaborates with the ETS transcription factor ERM to stimulate transcription of acetylcholine receptor genes. Co-cultures of induced pluripotent stem cell-derived motor neurons and myotubes from patients with FUS-ALS revealed endplate maturation defects due to intrinsic FUS toxicity in both motor neurons and myotubes. Thus, FUS regulates acetylcholine receptor gene expression in subsynaptic myonuclei, and muscle-intrinsic toxicity of ALS mutant FUS may contribute to dying-back motor neuronopathy.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Gene Expression Regulation/physiology , Nerve Degeneration/physiopathology , Neuromuscular Junction/metabolism , RNA-Binding Protein FUS/physiology , Adult , Amyotrophic Lateral Sclerosis/pathology , Animals , Cells, Cultured , Female , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Knockout , Motor Neurons/pathology , Muscle Fibers, Skeletal/pathology , Neuromuscular Junction/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Receptors, Cholinergic/metabolism , Young Adult
10.
J Cell Biol ; 217(11): 3947-3964, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30209068

ABSTRACT

Cabeza (caz) is the single Drosophila melanogaster orthologue of the human FET proteins FUS, TAF15, and EWSR1, which have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. In this study, we identified Xrp1, a nuclear chromatin-binding protein, as a key modifier of caz mutant phenotypes. Xrp1 expression was strongly up-regulated in caz mutants, and Xrp1 heterozygosity rescued their motor defects and life span. Interestingly, selective neuronal Xrp1 knockdown was sufficient to rescue, and neuronal Xrp1 overexpression phenocopied caz mutant phenotypes. The caz/Xrp1 genetic interaction depended on the functionality of the AT-hook DNA-binding domain in Xrp1, and the majority of Xrp1-interacting proteins are involved in gene expression regulation. Consistently, caz mutants displayed gene expression dysregulation, which was mitigated by Xrp1 heterozygosity. Finally, Xrp1 knockdown substantially rescued the motor deficits and life span of flies expressing ALS mutant FUS in motor neurons, implicating gene expression dysregulation in ALS-FUS pathogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Motor Neurons/metabolism , Mutation , RNA-Binding Proteins/metabolism , Transcription Factor TFIID/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Knockdown Techniques , Humans , Protein Domains , RNA-Binding Proteins/genetics , Transcription Factor TFIID/genetics
11.
Acta Neuropathol ; 133(6): 887-906, 2017 06.
Article in English | MEDLINE | ID: mdl-28243725

ABSTRACT

Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/metabolism , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/metabolism , Axons/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Motor Neurons/pathology , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , RNA, Messenger/metabolism , RNA-Binding Protein FUS/genetics , Spinal Cord/metabolism , Spinal Cord/pathology
12.
EMBO J ; 35(10): 1077-97, 2016 05 17.
Article in English | MEDLINE | ID: mdl-26951610

ABSTRACT

FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.


Subject(s)
Motor Neurons/metabolism , RNA-Binding Protein FUS/genetics , Animals , Brain/metabolism , Cytoplasm/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Mutation , RNA-Binding Protein FUS/metabolism , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...