Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11168, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750086

ABSTRACT

It is essential that people with limb amputation maintain proper prosthetic socket fit to prevent injury. Monitoring and adjusting socket fit, for example by removing the prosthesis to add prosthetic socks, is burdensome and can adversely affect users' function and quality-of-life. This study presents results from take-home testing of a motor-driven adaptive socket that automatically adjusted socket size during walking. A socket fit metric was calculated from inductive sensor measurements of the distance between the elastomeric liner surrounding the residual limb and the socket's inner surface. A proportional-integral controller was implemented to adjust socket size. When tested on 12 participants with transtibial amputation, the controller was active a mean of 68% of the walking time. In general, participants who walked more than 20 min/day demonstrated greater activity, less doff time, and fewer manual socket size adjustments for the adaptive socket compared with a locked non-adjustable socket and a motor-driven socket that participants adjusted with a smartphone application. Nine of 12 participants reported that they would use a motor-driven adjustable socket if it were available as it would limit their socket fit issues. The size and weight of the adaptive socket were considered the most important variables to improve.


Subject(s)
Amputation, Surgical , Artificial Limbs , Prosthesis Design , Tibia , Walking , Humans , Male , Female , Middle Aged , Tibia/surgery , Adult , Prosthesis Fitting/methods , Aged , Amputees/rehabilitation , Quality of Life
2.
Clin Biomech (Bristol, Avon) ; 106: 105986, 2023 06.
Article in English | MEDLINE | ID: mdl-37210769

ABSTRACT

BACKGROUND: A challenge often faced by people with lower extremity amputation is management of prosthetic socket fit due to changes in fluid volume within their residual limb. Prior research suggests that intermittently doffing the prosthetic socket may help stabilize daily residual limb fluid volume. METHODS: To assess the effects of partial doff duration on residual limb fluid volume retention, participants with transtibial amputation were tested by walking on a treadmill in a controlled, laboratory setting under three conditions. An automated system to release the locking pin and enlarge the socket was used to produce the partial doffing. Percent limb fluid volume changes after partial doffing for 4 min (Short Rest) and for 10 min (Long Rest) were compared with no partial doffing (No Release). Limb fluid volume was monitored using bioimpedance analysis. FINDINGS: Mean percent fluid volume changes in the posterior region were  -1.2% for No Release, 2.7% for Short Rest, and 1.0% for Long Rest. Short and Long Rests had larger increases than No Release (P = 0.005 and 0.03, respectively); Short and Long Rests were not statistically different (P = 0.10). Eight of the thirteen participants experienced a higher percent fluid volume gain for both release protocols while four experienced a higher percent fluid volume gain for only one release protocol. INTERPRETATION: A partial doff duration as short as 4 min may be an effective strategy to stabilize limb fluid volume in prosthesis users with transtibial amputation. Trials in at-home settings should be pursued.


Subject(s)
Amputation Stumps , Artificial Limbs , Humans , Tibia/surgery , Prosthesis Fitting/methods , Extracellular Fluid , Amputation, Surgical , Prosthesis Design
3.
J Rehabil Assist Technol Eng ; 10: 20556683231163337, 2023.
Article in English | MEDLINE | ID: mdl-36935866

ABSTRACT

Introduction: The purpose of this study was to test a novel activity monitor that tracks the time a prosthesis is worn, and the nature of the ambulatory activity conducted with the prosthesis. These capabilities allow prosthesis users' wear and accommodation practices (e.g., temporary doffing) to be monitored, and the intensity of their activities to be assessed. Methods: A portable limb-socket motion sensing system was used to monitor doffs, walk bouts (≥5 steps), low locomotion (2-4 steps), stationary positions, and weight shifts in a group of transtibial prosthesis users. The relationship between doff time and active motion time was investigated, and durations of low and high intensity active motions were compared. Results: For the 14 participants tested, the median prosthesis day duration ranged from 12.8-18.8 h. Eleven participants typically doffed five or fewer times per day, and three participants typically doffed 10 or more times per day. Nine participants demonstrated a positive correlation between daily doff duration and active motion duration. Six participants spent more time in weight shifts than walk bouts, while eight participants spent more time in walk bouts than weight shifts. Conclusion: Capturing don time and temporary doffs and distinguishing weight shifts from walks may provide insight relevant to patient care. Longer-term monitoring studies should be conducted, and the clinical utility of the data evaluated.

4.
Front Rehabil Sci ; 4: 1322202, 2023.
Article in English | MEDLINE | ID: mdl-38192637

ABSTRACT

Introduction: Low-level distal weight bearing in transtibial prosthesis users may help maintain perfusion and improve both proprioception and residual limb tissue health. Methods: The primary objectives of this research were to develop a sensor to continuously measure distal weight bearing, evaluate how prosthesis design variables affected weight bearing levels, and assess fluctuations in distal weight bearing during at-home and community use. Results: In-lab testing on a small group of participants wearing adjustable sockets demonstrated that if distal contact was present, when socket size was increased distal weight bearing increased and when socket size was reduced distal weight bearing decreased. During take-home use, participants accepted the distal weight bearing level set by the research team. It ranged between 1.1% and 6.4% BW for all days tested. The coefficient of variation (standard deviation/mean) ranged from 25% to 43% and was expected due in part to differences in walking style, speed, terrain, direction of ambulation, and bout duration. Two participants commented that they preferred presence of distal weight bearing to non-presence. Discussion: Next steps in this research are to develop clinical practices to determine target distal weight bearing levels and ranges, and to simplify the design of the sensor and weight bearing adjustment mechanism for clinical use.

5.
Clin Biomech (Bristol, Avon) ; 99: 105741, 2022 10.
Article in English | MEDLINE | ID: mdl-36041309

ABSTRACT

BACKGROUND: Step activity monitors provide insight into the amount of physical activity prosthesis users conduct but not how they use their prosthesis. The purpose of this research was to help fill this void by developing and testing a technology to monitor bodily position and type of activity. METHODS: Thin inductive distance sensors were adhered to the insides of sockets of a small group of transtibial prosthesis users, two at proximal locations and two at distal locations. An in-lab structured protocol and a semi-structured out-of-lab protocol were video recorded, and then participants wore the sensing system for up to 7 days. A data processing algorithm was developed to identify sit, seated shift, stand, standing weight-shift, walk, partial doff, and non-use. Sensed distance data from the structured and semi-structured protocols were compared against the video data to characterize accuracy. Bodily positions and activities during take-home testing were tabulated to characterize participants' use of the prosthesis. FINDINGS: Sit and walk detection accuracies were above 95% for all four participants tested. Stand detection accuracy was above 90% for three participants and 62.5% for one participant. The reduced accuracy may have been due to limited stand data from that participant. Step count was not proportional to active use time (sum of stand, walk, and standing weight-shift times). INTERPRETATION: Step count may provide an incomplete picture of prosthesis use. Larger studies should be pursued to investigate how bodily position and type of activity may facilitate clinical decision-making and improve the lives of people with lower limb amputation.


Subject(s)
Artificial Limbs , Amputation, Surgical , Amputation Stumps , Humans , Prosthesis Design , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...