Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 11(3): 266-271, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32184955

ABSTRACT

Necroptosis has been implicated in a variety of disease states, and RIPK3 is one of the kinases identified to play a critical role in this signaling pathway. In an effort to identify RIPK3 kinase inhibitors with a novel profile, mechanistic studies were incorporated at the hit triage stage. Utilization of these assays enabled identification of a Type II DFG-out inhibitor for RIPK3, which was confirmed by protein crystallography. Structure-based drug design on the inhibitors targeting this previously unreported conformation enabled an enhancement in selectivity against key off-target kinases.

2.
ACS Med Chem Lett ; 10(3): 306-311, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891131

ABSTRACT

The four members of the Janus family of nonreceptor tyrosine kinases play a significant role in immune function. The JAK family kinase inhibitor, tofacitinib 1, has been approved in the United States for use in rheumatoid arthritis (RA) patients. A number of JAK inhibitors with a variety of JAK family selectivity profiles are currently in clinical trials. Our goal was to identify inhibitors that were functionally selective for JAK1 and JAK3. Compound 22 was prepared with the desired functional selectivity profile, but it suffered from poor absorption related to physical properties. Use of the phosphate prodrug 32 enabled progression to a murine collagen induced arthritis (CIA) model. The demonstration of a robust efficacy in the CIA model suggests that use of phosphate prodrugs may resolve issues with progressing this chemotype for the treatment of autoimmune diseases such as RA.

3.
Science ; 348(6237): 886-91, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25999503

ABSTRACT

The synthesis and functionalization of amines are fundamentally important in a vast range of chemical contexts. We present an amine synthesis that repurposes two simple feedstock building blocks: olefins and nitro(hetero)arenes. Using readily available reactants in an operationally simple procedure, the protocol smoothly yields secondary amines in a formal olefin hydroamination. Because of the presumed radical nature of the process, hindered amines can easily be accessed in a highly chemoselective transformation. A screen of more than 100 substrate combinations showcases tolerance of numerous unprotected functional groups such as alcohols, amines, and even boronic acids. This process is orthogonal to other aryl amine syntheses, such as the Buchwald-Hartwig, Ullmann, and classical amine-carbonyl reductive aminations, as it tolerates aryl halides and carbonyl compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...