Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361896

ABSTRACT

The rationale to define the biological and molecular parameters derived from structure-activity relationships (SAR) is mandatory for the lead selection of small drug compounds. Several series of small molecules have been synthesized based on a computer-assisted pharmacophore design derived from two series of compounds whose scaffold originates from chloroquine or amodiaquine. All compounds share similar biological activities. In vivo, Alzheimer's disease-related pathological lesions are reduced, consisting of amyloid deposition and neurofibrillary degeneration, which restore and reduce cognitive-associated impairments and neuroinflammation, respectively. Screening election was performed using a cell-based assay to measure the repression of Aß1-x peptide production, the increased stability of APP metabolites, and modulation of the ratio of autophagy markers. These screening parameters enabled us to select compounds as potent non-competitive ß-secretase modulators, associated with various levels of lysosomotropic or autophagy modulatory activities. Structure-activity relationship analyses enabled us to define that (1) selectively reducing the production of Aß1-x, and (2) little Aßx-40/42 modification together with (3) a decreased ratio of p62/(LC3-I/LC3-II) enabled the selection of non-competitive ß-secretase modulators. Increased stability of CTFα and AICD precluded the selection of compounds with lysosomotropic activity whereas cell toxicity was associated with the sole p62 enhanced expression shown to be driven by the loss of nitrogen moieties. These SAR parameters are herein proposed with thresholds that enable the selection of potent anti-Alzheimer drugs for which further investigation is necessary to determine the basic mechanism underlying their mode of action.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Structure-Activity Relationship
3.
Theranostics ; 10(18): 7938-7955, 2020.
Article in English | MEDLINE | ID: mdl-32724451

ABSTRACT

The sigma 1 receptor (S1R) is widely expressed in the CNS and is mainly located on the endoplasmic reticulum. The S1R is involved in the regulation of many neurotransmission systems and, indirectly, in neurodegenerative diseases. The S1R may therefore represent an interesting neuronal biomarker in neurodegenerative diseases such as Parkinson's (PD) or Alzheimer's diseases (AD). Here we present the characterisation of the S1R-specific 18F-labelled tracer 18F-IAM6067 in two animal models and in human brain tissue. Methods: Wistar rats were used for PET-CT imaging (60 min dynamic acquisition) and metabolite analysis (1, 2, 5, 10, 20, 60 min post-injection). To verify in vivo selectivity, haloperidol, BD1047 (S1R ligand), CM398 (S2R ligand) and SB206553 (5HT2B/C antagonist) were administrated for pre-saturation studies. Excitotoxic lesions induced by intra-striatal injection of AMPA were also imaged by 18F-IAM6067 PET-CT to test the sensitivity of the methods in a well-established model of neuronal loss. Tracer brain uptake was also verified by autoradiography in rats and in a mouse model of PD (intrastriatal 6-hydroxydopamine (6-OHDA) unilateral lesion). Finally, human cortical binding was investigated by autoradiography in three groups of subjects (control subjects with Braak ≤2, and AD patients, Braak >2 & ≤4 and Braak >4 stages). Results: We demonstrate that despite rapid peripheral metabolism of 18F-IAM6067, radiolabelled metabolites were hardly detected in brain samples. Brain uptake of 18F-IAM6067 showed differences in S1R anatomical distribution, namely from high to low uptake: pons-raphe, thalamus medio-dorsal, substantia nigra, hypothalamus, cerebellum, cortical areas and striatum. Pre-saturation studies showed 79-90% blockade of the binding in all areas of the brain indicated above except with the 5HT2B/C antagonist SB206553 and S2R ligand CM398 which induced no significant blockade, indicating good specificity of 18F-IAM6067 for S1Rs. No difference between ipsi- and contralateral sides of the brain in the mouse model of PD was detected. AMPA lesion induced a significant 69% decrease in 18F-IAM6067 uptake in the globus pallidus matching the neuronal loss as measured by NeuN, but only a trend to decrease (-16%) in the caudate putamen despite a significant 91% decrease in neuronal count. Moreover, no difference in the human cortical binding was shown between AD groups and controls. Conclusion: This work shows that 18F-IAM6067 is a specific and selective S1R radiotracer. The absence or small changes in S1R detected here in animal models and human tissue warrants further investigations and suggests that S1R might not be the anticipated ideal biomarker for neuronal loss in neurodegenerative diseases such as AD and PD.


Subject(s)
Alzheimer Disease/diagnosis , Brain/diagnostic imaging , Parkinson Disease, Secondary/diagnosis , Radiopharmaceuticals/administration & dosage , Receptors, sigma/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Autoradiography , Brain/pathology , Disease Models, Animal , Female , Fluorine Radioisotopes/administration & dosage , Humans , Male , Middle Aged , Molecular Imaging/methods , Oxidopamine/administration & dosage , Oxidopamine/toxicity , Parkinson Disease, Secondary/etiology , Parkinson Disease, Secondary/pathology , Positron Emission Tomography Computed Tomography/methods , Rats , Rats, Wistar , Sigma-1 Receptor
4.
AAPS J ; 22(5): 94, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32691179

ABSTRACT

The sigma-2 receptor has been cloned and identified as Tmem97, which is a transmembrane protein involved in intracellular Ca2+ regulation and cholesterol homeostasis. Since its discovery, the sigma-2 receptor has been an extremely controversial target, and many efforts have been made to elucidate the functional role of this receptor during physiological and pathological conditions. Recently, this receptor has been proposed as a potential target to treat neuropathic pain due to the ability of sigma-2 receptor agonists to relieve mechanical hyperalgesia in mice model of chronic pain. In the present work, we developed a highly selective sigma-2 receptor ligand (sigma-1/sigma-2 selectivity ratio > 1000), 1-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-3-methyl-1H- benzo[d]imidazol-2(3H)-one (CM398), with an encouraging in vitro and in vivo pharmacological profile in rodents. In particular, radioligand binding studies demonstrated that CM398 had preferential affinity for sigma-2 receptor compared with sigma-1 receptor and at least four other neurotransmitter receptors sites, including the norepinephrine transporter. Following oral administration, CM398 showed rapid absorption and peak plasma concentration (Cmax) occurred within 10 min of dosing. Moreover, the compound showed adequate, absolute oral bioavailability of 29.0%. Finally, CM398 showed promising anti-inflammatory analgesic effects in the formalin model of inflammatory pain in mice. The results collected in this study provide more evidence that selective sigma-2 receptor ligands can be useful tools in the development of novel pain therapeutics and altogether, these data suggest that CM398 is a suitable lead candidate for further evaluation.


Subject(s)
Analgesics/pharmacology , Receptors, sigma/agonists , Analgesics/chemical synthesis , Analgesics/therapeutic use , Animals , Drug Discovery , Drug Evaluation, Preclinical , Male , Mice , Rats, Sprague-Dawley
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1134-1135: 121875, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31790916

ABSTRACT

The nonpeptide small molecule, MES207, exhibits 17-fold preferential binding to the neuropeptide FF receptor 1 (NPFFR1) over NPFFR2 and shows antagonist functionality at NPFF receptors. In order to further the development of MES207 as a NPFFR1 probe, an UPLC-MS/MS bioanalytical method was developed and validated to quantify MES207 in rat plasma for a linearity range of 3-200 ng/mL. The method was applied in the analysis of the plasma, brain, and urine samples collected during pharmacokinetic studies in healthy male and female Sprague Dawley rats. The animals were dosed through oral gavage (50 mg/kg) and intravenously (2.5 mg/kg). Test samples were analyzed using the validated bioanalytical method to generate plasma concentration-time profiles. The results were further subjected to non-compartmental analysis using Phoenix 6.4®. MES207 exhibits a large volume of distribution (1.2 ±â€¯0.6 L), high clearance (0.8 ±â€¯0.1 L/h), and a poor oral bioavailability (1.7 ±â€¯0.4%). The compound also showed a multiple peak phenomenon with a very short absorption phase. It appears that gender does not significantly influence the differences in pharmacokinetic parameters of this NPFF probe.


Subject(s)
Guanidines/blood , Guanidines/pharmacokinetics , Piperidines/blood , Piperidines/pharmacokinetics , Receptors, Neuropeptide/antagonists & inhibitors , Animals , Chromatography, High Pressure Liquid/methods , Drug Stability , Female , Guanidines/chemistry , Limit of Detection , Linear Models , Male , Piperidines/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry/methods
6.
Eur J Med Chem ; 165: 250-257, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30685525

ABSTRACT

Sigma receptors (σRs) are considered to be a significant and valid target for developing new medications to address several diseases. Their potential involvement in numerous central nervous system disorders, neuropathic pain, addiction, and cancer has been extensively reported. In particular, the σ2R has been identified as potential target for the development of pharmaceutical agents intended to treat the negative effects associated with drugs of abuse. As a continuation of our previous efforts to develop new selective σ2R ligands, a series of benzimidazolone derivatives were designed, synthesized, and characterized. The newly synthesized ligands were evaluated through in vitro radioligand binding assays to determine their affinity and selectivity towards both σ1 and σ2 receptors. Several derivatives displayed high affinity for the σ2R (Ki = 0.66-68.5 nM) and varied from preferring to selective, compared to σ1R (σ1/σ2 = 5.8-1139). Among them, compound 1-{4-[4-(4-fluorophenyl)piperazin-1-yl]butyl}-3-propyl-1,3-dihydrobenzimidazol-2-one dihydrochloride (14) displayed the ability to produce a dose-dependent reduction in the convulsive effects of cocaine in a rodent model after injecting 10 mg/kg (i.p.). These preliminary results support the use of selective σ2R ligands in the development of useful pharmacological tools or potential pharmacotherapies for cocaine toxicity.


Subject(s)
Benzimidazoles/metabolism , Cocaine-Related Disorders/drug therapy , Ligands , Receptors, sigma/metabolism , Animals , Benzimidazoles/chemistry , Humans , Protein Binding , Radioligand Assay , Seizures/prevention & control , Structure-Activity Relationship , Substance-Related Disorders/drug therapy
7.
J Pharmacol Exp Ther ; 368(2): 272-281, 2019 02.
Article in English | MEDLINE | ID: mdl-30530624

ABSTRACT

Sigma-2 receptors, recently identified as TMEM97, have been implicated in cancer and neurodegenerative disease. Structurally distinct sigma-2 receptor ligands induce cell death in tumor cells, linking sigma-2 receptors to apoptotic pathways. Recently, we reported that sigma-2 receptors can also stimulate glycolytic hallmarks, effects consistent with a prosurvival function and upregulation in cancer cells. Both apoptotic and metabolically stimulative effects were observed with compounds related to the canonical sigma-2 antagonist SN79. Here we investigate a series of 6-substituted SN79 analogs to assess the structural determinants governing these divergent effects. Substitutions on the benzoxazolone ring of the core SN79 structure resulted in high-affinity sigma-2 receptor ligands (K i = 0.56-17.9 nM), with replacement of the heterocyclic oxygen by N-methyl (producing N-methylbenzimidazolones) generally decreasing sigma-1 affinity and a sulfur substitution (producing benzothiazolones) imparting high affinity at both subtypes, lowering subtype selectivity. Substitution at the 6-position with COCH3, NO2, NH2, or F resulted in ligands that were not cytotoxic. Five of these ligands induced an increase in metabolic activity, as measured by increased reduction of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in human SK-N-SH neuroblastoma cells, further supporting a role for sigma-2 receptors in metabolism. Substitution with 6-isothiocyanate resulted in ligands that were sigma-2 selective and that irreversibly bound to the sigma-2 receptor, but not to the sigma-1 receptor. These ligands induced cell death upon both acute and continuous treatment (EC50 = 7.6-32.8 µM), suggesting that irreversible receptor binding plays a role in cytotoxicity. These ligands will be useful for further study of these divergent roles of sigma-2 receptors.


Subject(s)
Benzoxazoles/metabolism , Cytotoxins/metabolism , Piperazines/metabolism , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/metabolism , Animals , Benzoxazoles/chemistry , Cell Line, Tumor , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Humans , Piperazines/chemistry , Protein Binding/physiology , Rats , Structure-Activity Relationship
8.
Drug Test Anal ; 9(8): 1236-1242, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28039926

ABSTRACT

An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for quantification of CM304, a novel and highly selective sigma-1 receptor antagonist that has recently entered into human clinical trials. A structural analogue of CM304, SN56, was used as the internal standard (IS). Chromatographic separation was achieved on an Acquity UPLC™ BEH C18 (1.7 µm, 2.1 mm × 50 mm) column using a mobile phase [water:methanol (0.1%v/v formic acid; 50:50, %v/v)] at a flow rate of 0.2 mL/min. Mass spectrometric detection was performed in the positive ionization mode with multiple reaction monitoring (MRM) using m/z transitions of 337 > 238 for CM304 and 319 > 220 for the IS. The method was found to be linear and reproducible with a regression coefficient consistently >0.99 for the calibration range of 3 to 3000 ng/mL. The extraction recovery ranged from 91.5 to 98.4% from spiked (7.5, 300 and 2526 ng/mL) plasma quality control samples. The precision (%RSD; 1.1 to 2.9%) and accuracy (%RE; -1.9 to 1.8%) were within acceptable limit. The validated method was successfully applied to a single dose oral and intravenous (I.V.) pharmacokinetic study of CM304 in rats. Following I.V. administration, the compound exhibited adequate exposure along with high extravascular distribution and insignificant amount of extra hepatic metabolism. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Azepines/blood , Benzothiazoles/blood , Receptors, sigma/antagonists & inhibitors , Tandem Mass Spectrometry/methods , Administration, Intravenous , Administration, Oral , Animals , Azepines/administration & dosage , Azepines/analysis , Benzothiazoles/administration & dosage , Benzothiazoles/analysis , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/methods , Limit of Detection , Male , Rats , Rats, Sprague-Dawley , Sigma-1 Receptor
9.
J Pharmacol Exp Ther ; 358(1): 109-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27189970

ABSTRACT

The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists.


Subject(s)
Behavior, Animal/drug effects , Cocaine/antagonists & inhibitors , Cocaine/pharmacology , Receptors, sigma , Animals , Brain/drug effects , Brain/metabolism , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Guanidines/administration & dosage , Guanidines/pharmacology , Guinea Pigs , In Vitro Techniques , Ligands , Male , Morpholines/administration & dosage , Morpholines/pharmacology , Pentazocine/administration & dosage , Pentazocine/pharmacology , Protein Binding , Radioligand Assay , Rats, Sprague-Dawley , Receptors, sigma/agonists , Receptors, sigma/antagonists & inhibitors , Self Administration
10.
J Pharmacol Exp Ther ; 356(2): 232-43, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26574517

ABSTRACT

Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 receptors. CM764 [6-acetyl-3-(4-(4-(2-amino-4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one] binds with Ki values of 86.6 ± 2.8 and 3.5 ± 0.9 nM at the sigma-1 and sigma-2 receptors, respectively. CM764 increased reduction of MTT [3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide] in human SK-N-SH neuroblastoma compared with untreated cells, an effect not due to proliferation. This effect was attenuated by five different sigma antagonists, including CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one], which has no significant affinity for sigma-1 receptors. This effect was also observed in MG-63 osteosarcoma and HEK293T cells, indicating that this function is not exclusive to neuroblastoma or to cancer cells. CM764 produced an immediate, robust, and transient increase in cytosolic calcium, consistent with sigma-2 receptor activation. Additionally, we observed an increase in the total NAD(+)/NADH level and the ATP level in CM764-treated SK-N-SH cells compared with untreated cells. After only 4 hours of treatment, basal levels of reactive oxygen species were reduced by 90% in cells treated with CM764 over untreated cells, and HIF1α and VEGF levels were increased after 3-24 hours of treatment. These data indicate that sigma-2 receptors may play a role in induction of glycolysis, representing a possible prosurvival function for the sigma-2 receptor that is consistent with its upregulation in cancer cells compared with healthy tissue.


Subject(s)
Benzoxazoles/chemistry , Benzoxazoles/metabolism , Glycolysis/physiology , Neuroblastoma/metabolism , Piperazines/chemistry , Piperazines/metabolism , Receptors, sigma/antagonists & inhibitors , Receptors, sigma/physiology , Animals , Benzoxazoles/pharmacology , Cell Line, Tumor , Glycolysis/drug effects , HEK293 Cells , Humans , Piperazines/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL