Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neuromodulation ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37140522

ABSTRACT

STUDY DESIGN: This is a report of methods and tools for selection of task and individual configurations targeted for voluntary movement, standing, stepping, blood pressure stabilization, and facilitation of bladder storage and emptying using tonic-interleaved excitation of the lumbosacral spinal cord. OBJECTIVES: This study aimed to present strategies used for selection of stimulation parameters for various motor and autonomic functions. CONCLUSIONS: Tonic-interleaved functionally focused neuromodulation targets a myriad of consequences from spinal cord injury with surgical implantation of the epidural electrode at a single location. This approach indicates the sophistication of the human spinal cord circuitry and its important role in the regulation of motor and autonomic functions in humans.

2.
Brain Commun ; 5(1): fcac330, 2023.
Article in English | MEDLINE | ID: mdl-36632181

ABSTRACT

With emerging applications of spinal cord electrical stimulation in restoring autonomic and motor function after spinal cord injury, understanding the neuroanatomical substrates of the human spinal cord after spinal cord injury using neuroimaging techniques can play a critical role in optimizing the outcomes of these stimulation-based interventions. In this study, we have introduced a neuroimaging acquisition and analysis protocol of the spinal cord in order to identify: (i) spinal cord levels at the lumbosacral enlargement using nerve root tracing; (ii) variability in the neuroanatomical characteristics of the spinal cord among individuals; (iii) location of the epidural stimulation paddle electrode and contacts with respect to the spinal cord levels at lumbosacral enlargement; and (iv) the links between the anatomical levels of stimulation and the corresponding neurophysiological motor responses. Twelve individuals with chronic, motor complete spinal cord injury implanted with a spinal cord epidural stimulator were included in the study (age: 34 ± 10.9 years, sex: 10 males, 2 females, time since injury: 8.2 ± 9.9 years, American Spinal Injury Association Impairment Scale: 6 A, 6 B). High-resolution MRI scans of the spinal cord were recorded pre-implant. An analysis of neuroanatomical substrates indicates that the length of the spinal column and spinal cord, location of the conus tip and the relationship between the spinal cord levels and vertebral levels, particularly at the lumbosacral enlargement, are variable across individuals. There is no statistically significant correlation between the length of the spinal column and the length of the spinal cord. The percentage of volumetric coverage of the lumbosacral spinal cord by the epidural stimulation paddle electrode ranges from 33.4 to 90.4% across participants. The location of the spinal cord levels with respect to the electrode contacts varies across individuals and impacts the recruitment patterns of neurophysiological responses. Finally, MRI-based spinal cord modelling can be used as a guide for the prediction and preplanning of optimum epidural stimulation paddle placement prior to the implant surgery to ensure maximizing functional outcomes. These findings highlight the crucial role that the neuroanatomical characteristics of the spinal cord specific to each individual play in achieving maximum functional benefits with spinal cord electrical stimulation.

3.
Sci Rep ; 12(1): 11179, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778466

ABSTRACT

Profound dysfunctional reorganization of spinal networks and extensive loss of functional continuity after spinal cord injury (SCI) has not precluded individuals from achieving coordinated voluntary activity and gaining multi-systemic autonomic control. Bladder function is enhanced by approaches, such as spinal cord epidural stimulation (scES) that modulates and strengthens spared circuitry, even in cases of clinically complete SCI. It is unknown whether scES parameters specifically configured for modulating the activity of the lower urinary tract (LUT) could improve both bladder storage and emptying. Functional bladder mapping studies, conducted during filling cystometry, identified specific scES parameters that improved bladder compliance, while maintaining stable blood pressure, and enabled the initiation of voiding in seven individuals with motor complete SCI. Using high-resolution magnetic resonance imaging and finite element modeling, specific neuroanatomical structures responsible for modulating bladder function were identified and plotted as heat maps. Data from this pilot clinical trial indicate that scES neuromodulation that targets bladder compliance reduces incidences of urinary incontinence and provides a means for mitigating autonomic dysreflexia associated with bladder distention. The ability to initiate voiding with targeted scES is a key step towards regaining volitional control of LUT function, advancing the application and adaptability of scES for autonomic function.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Epidural Space , Humans , Spinal Cord Stimulation/methods , Urinary Bladder , Urination
4.
J Clin Med ; 11(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35806954

ABSTRACT

It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.

5.
Exp Brain Res ; 240(1): 279-288, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34854934

ABSTRACT

Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Epidural Space/diagnostic imaging , Humans , Spinal Cord/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/therapy , Standing Position
6.
Neuromodulation ; 24(3): 405-415, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33794042

ABSTRACT

STUDY DESIGN: This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES: 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS: Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS: Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Clinical Trials as Topic , Epidural Space , Humans , Spinal Cord , Spinal Cord Injuries/therapy
7.
Brain ; 144(2): 420-433, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33367527

ABSTRACT

Spinal cord epidural stimulation (scES) has enabled volitional lower extremity movements in individuals with chronic and clinically motor complete spinal cord injury and no clinically detectable brain influence. The aim of this study was to understand whether the individuals' neuroanatomical characteristics or positioning of the scES electrode were important factors influencing the extent of initial recovery of lower limb voluntary movements in those with clinically motor complete paralysis. We hypothesized that there would be significant correlations between the number of joints moved during attempts with scES prior to any training interventions and the amount of cervical cord atrophy above the injury, length of post-traumatic myelomalacia and the amount of volume coverage of lumbosacral enlargement by the stimulation electrode array. The clinical and imaging records of 20 individuals with chronic and clinically motor complete spinal cord injury who underwent scES implantation were reviewed and analysed using MRI and X-ray integration, image segmentation and spinal cord volumetric reconstruction techniques. All individuals that participated in the scES study (n = 20) achieved, to some extent, lower extremity voluntary movements post scES implant and prior to any locomotor, voluntary movement or cardiovascular training. The correlation results showed that neither the cross-section area of spinal cord at C3 (n = 19, r = 0.33, P = 0.16) nor the length of severe myelomalacia (n = 18, r = -0.02, P = 0.93) correlated significantly with volitional lower limb movement ability. However, there was a significant, moderate correlation (n = 20, r = 0.59, P = 0.006) between the estimated percentage of the lumbosacral enlargement coverage by the paddle electrode as well as the position of the paddle relative to the maximal lumbosacral enlargement and the conus tip (n = 20, r = 0.50, P = 0.026) with the number of joints moved volitionally. These results suggest that greater coverage of the lumbosacral enlargement by scES may improve motor recovery prior to any training, possibly because of direct modulatory effects on the spinal networks that control lower extremity movements indicating the significant role of motor control at the level of the spinal cord.


Subject(s)
Movement , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/methods , Volition , Adult , Epidural Space , Female , Humans , Male , Middle Aged , Prognosis , Treatment Outcome , Young Adult
8.
Sci Rep ; 9(1): 14474, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597924

ABSTRACT

The appropriate selection of individual-specific spinal cord epidural stimulation (scES) parameters is crucial to re-enable independent standing with self-assistance for balance in individuals with chronic, motor complete spinal cord injury, which is a key achievement toward the recovery of functional mobility. To date, there are no available algorithms that contribute to the selection of scES parameters for facilitating standing in this population. Here, we introduce a novel framework for EMG data processing that implements spectral analysis by continuous wavelet transform and machine learning methods for characterizing epidural stimulation-promoted EMG activity resulting in independent standing. Analysis of standing data collected from eleven motor complete research participants revealed that independent standing was promoted by EMG activity characterized by lower median frequency, lower variability of median frequency, lower variability of activation pattern, lower variability of instantaneous maximum power, and higher total power. Additionally, the high classification accuracy of assisted and independent standing allowed the development of a prediction algorithm that can provide feedback on the effectiveness of muscle-specific activation for standing promoted by the tested scES parameters. This framework can support researchers and clinicians during the process of selection of epidural stimulation parameters for standing motor rehabilitation.


Subject(s)
Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/methods , Adult , Algorithms , Electrodes, Implanted , Electromyography/statistics & numerical data , Epidural Space , Female , Fourier Analysis , Humans , Machine Learning , Male , Muscle, Skeletal/physiopathology , Range of Motion, Articular/physiology , Spinal Cord Stimulation/statistics & numerical data , Standing Position , Wavelet Analysis , Young Adult
10.
PLoS One ; 14(5): e0216487, 2019.
Article in English | MEDLINE | ID: mdl-31071158

ABSTRACT

Severe spinal cord injury (SCI) leads to skeletal muscle atrophy and adipose tissue infiltration in the skeletal muscle, which can result in compromised muscle mechanical output and lead to health-related complications. In this study, we developed a novel automatic 3-D approach for volumetric segmentation and quantitative assessment of thigh Magnetic Resonance Imaging (MRI) volumes in individuals with chronic SCI as well as non-disabled individuals. In this framework, subcutaneous adipose tissue, inter-muscular adipose tissue and total muscle tissue are segmented using linear combination of discrete Gaussians algorithm. Also, three thigh muscle groups were segmented utilizing the proposed 3-D Joint Markov Gibbs Random Field model that integrates first order appearance model, spatial information, and shape model to localize the muscle groups. The accuracy of the automatic segmentation method was tested both on SCI (N = 16) and on non-disabled (N = 14) individuals, showing an overall 0.93±0.06 accuracy for adipose tissue and muscle compartments segmentation based on Dice Similarity Coefficient. The proposed framework for muscle compartment segmentation showed an overall higher accuracy compared to ANTs and STAPLE, two previously validated atlas-based segmentation methods. Also, the framework proposed in this study showed similar Dice accuracy and better Hausdorff distance measure to that obtained using DeepMedic Convolutional Neural Network structure, a well-known deep learning network for 3-D medical image segmentation. The automatic segmentation method proposed in this study can provide fast and accurate quantification of adipose and muscle tissues, which have important health and functional implications in the SCI population.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Models, Theoretical , Neural Networks, Computer , Spinal Cord Injuries/diagnostic imaging , Humans
11.
PLoS One ; 12(10): e0185582, 2017.
Article in English | MEDLINE | ID: mdl-29020054

ABSTRACT

Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR.


Subject(s)
Electric Stimulation Therapy , Electromyography/methods , Epidural Space/physiopathology , Evoked Potentials/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Adult , Algorithms , Artifacts , Automation , Electric Stimulation , Humans , Imaging, Three-Dimensional , Male , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...